转化医学研究前沿进展专题

肠道菌群介导胆汁酸影响炎症性肠病的研究进展

  • 夏西茜 ,
  • 丁珂珂 ,
  • 张慧恒 ,
  • 彭旭飞 ,
  • 孙昳旻 ,
  • 唐雅珺 ,
  • 汤晓芳
展开
  • 1.上海交通大学医学院附属第六人民医院转化医学中心,上海 200233
    2.上海交通大学医学院附属上海市第一人民医院临床研究院,上海 200080
夏西茜(2000—),女,硕士生;电子信箱:xiaxixi0715@163.com
汤晓芳,电子信箱:tangxiaofang19840@163.com

收稿日期: 2024-01-30

  录用日期: 2024-04-03

  网络出版日期: 2024-07-28

基金资助

上海市白玉兰人才计划浦江项目(23PJ1410700)

Research progress of the role of intestinal microbiota-mediated bile acids in inflammatory bowel disease

  • Xixi XIA ,
  • Keke DING ,
  • Huiheng ZHANG ,
  • Xufei PENG ,
  • Yimin SUN ,
  • Yajun TANG ,
  • Xiaofang TANG
Expand
  • 1.Center for Translational Medicine, Shanghai Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
    2.Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
TANG Xiaofang, E-mail: tangxiaofang19840@163.com.

Received date: 2024-01-30

  Accepted date: 2024-04-03

  Online published: 2024-07-28

Supported by

Shanghai Magnolia Talent Plan Pujiang Project(23PJ1410700)

摘要

据估计,全球约有700万人受炎症性肠病(inflammatory bowel disease,IBD)的影响,对医疗系统和社会造成了极大负担。在IBD的发生、进展及治疗过程中,肠道菌群及其关键代谢产物——胆汁酸扮演着至关重要的角色。肠道菌群不仅参与胆汁酸的生物转化,丰富胆汁酸的多样性,还通过法尼酯X受体(farnesoid X receptor,FXR)调控其合成与转运过程。同时,胆汁酸亦通过对微生物多样性的支持、直接毒性、间接抗微生物途径和对微生物代谢能力的影响,参与调整肠道菌群的结构和功能。此外,在正常生理条件下,经肠道菌群修饰后的胆汁酸能够促进肠上皮屏障的损伤修复过程,并且通过调节辅助性T细胞(helper T cell,Th细胞)17、调节性T细胞(regulatory T cell,Treg细胞)、CD8+ T细胞和自然杀伤T细胞(natural killer T cell,NKT细胞)等多种免疫细胞功能,促进免疫系统的平衡,减缓IBD的发展。该文重点探讨了肠道菌群通过介导胆汁酸在IBD的发生和发展中发挥的作用,并探索以肠道菌群和胆汁酸为靶点的新型有效治疗策略,如胆汁酸受体调节剂、益生菌和益生元干预、粪便菌群移植(fecal microbiota transplantation,FMT)以及噬菌体疗法等。

本文引用格式

夏西茜 , 丁珂珂 , 张慧恒 , 彭旭飞 , 孙昳旻 , 唐雅珺 , 汤晓芳 . 肠道菌群介导胆汁酸影响炎症性肠病的研究进展[J]. 上海交通大学学报(医学版), 2024 , 44(7) : 839 -846 . DOI: 10.3969/j.issn.1674-8115.2024.07.005

Abstract

It is estimated that approximately seven million people worldwide are affected by inflammatory bowel disease (IBD), causing a huge burden on healthcare systems and society. In the occurrence, progression, and treatment of IBD, the intestinal microbiota and its key metabolic product, bile acids, play a crucial role. The intestinal microbiota not only participates in the biotransformation of bile acids, enriching the diversity of bile acids, but also regulates their synthesis and transport through the farnesoid X receptor (FXR). Meanwhile, bile acids contribute to regulating the structure and function of the intestinal microbiota by supporting microbial diversity, exerting direct toxicity, participating in indirect antimicrobial pathways, and influencing microbial metabolic capabilities. Furthermore, under normal physiological conditions, intestinal microbiota-derived bile acids facilitate the repair process of the intestinal epithelial barrier. They also promote the balance of the immune system by modulating the functions of various immune cells including helper T (Th) cells 17, regulatory T (Treg) cells, CD8+ T cells and natural killer T(NKT) cells, thereby slowing down the development of IBD. This article focuses on exploring the role of intestinal microbiota and bile acids in the onset and progression of IBD, and investigating new effective treatment strategies by targeting intestinal microbiota and bile acids, such as bile acid receptor modulators, probiotics, prebiotics, fecal microbiota transplantation (FMT), and phage therapy.

参考文献

1 SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679.
2 KAPLAN G G, WINDSOR J W. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66.
3 SARTOR R B, WU G D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches[J]. Gastroenterology, 2017, 152(2): 327-339.e4.
4 LIU S, ZHAO W J, LAN P, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345.
5 SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468.
6 QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579(7797): 123-129.
7 SONG Z W, CAI Y Y, LAO X Z, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome[J]. Microbiome, 2019, 7(1): 9.
8 TANG B, TANG L, LI S P, et al. Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy[J]. Nat Commun, 2023, 14(1): 1305.
9 GOODWIN B, JONES S A, PRICE R R, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis[J]. Mol Cell, 2000, 6(3): 517-526.
10 KONG B, WANG L, CHIANG J Y, et al. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice[J]. Hepatology, 2012, 56(3): 1034-1043.
11 DENSON L A, STURM E, ECHEVARRIA W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp[J]. Gastroenterology, 2001, 121(1): 140-147.
12 CHIANG J Y L, FERRELL J M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573.
13 SUN L L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24(12): 1919-1929.
14 ZHANG X Q, OSAKA T, TSUNEDA S. Bacterial metabolites directly modulate farnesoid X receptor activity[J]. Nutr Metab, 2015, 12: 48.
15 VAN BEST N, ROLLE-KAMPCZYK U, SCHAAP F G, et al. Bile acids drive the newborn′s gut microbiota maturation[J]. Nat Commun, 2020, 11(1): 3692.
16 TIAN Y, GUI W, KOO I, et al. The microbiome modulating activity of bile acids[J]. Gut Microbes, 2020, 11(4): 979-996.
17 WATANABE M, FUKIYA S, YOKOTA A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58(6): 1143-1152.
18 LI Y, TANG R Q, LEUNG P S C, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases[J]. Autoimmun Rev, 2017, 16(9): 885-896.
19 CREMERS C M, KNOEFLER D, VITVITSKY V, et al. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo[J]. Proc Natl Acad Sci U S A, 2014, 111(16): E1610-E1619.
20 D'ALDEBERT E, BIYEYEME BI MVE M J, MERGEY M, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium[J]. Gastroenterology, 2009, 136(4): 1435-1443.
21 INAGAKI T, MOSCHETTA A, LEE Y K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3920-3925.
22 KAKIYAMA G, PANDAK W M, GILLEVET P M, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955.
23 MOUSA O Y, JURAN B D, MCCAULEY B M, et al. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation[J]. Hepatology, 2021, 74(1): 281-295.
24 SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.e5.
25 XU M Q, CEN M S, SHEN Y Q, et al. Deoxycholic acid-induced gut dysbiosis disrupts bile acid enterohepatic circulation and promotes intestinal inflammation[J]. Dig Dis Sci, 2021, 66(2): 568-576.
26 LI T, DING N, GUO H Q, et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage[J]. Cell Host Microbe, 2024, 32(2): 191-208.e9.
27 CHEN L, JIAO T Y, LIU W W, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal[J]. Cell Stem Cell, 2022, 29(9): 1366-1381.e9.
28 JIANG W Y, SU J W, ZHANG X F, et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease[J]. Inflamm Res, 2014, 63(11): 943-950.
29 PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce Τh17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912.
30 CARUSO R, LO B C, Nú?EZ G. Host-microbiota interactions in inflammatory bowel disease[J]. Nat Rev Immunol, 2020, 20(7): 411-426.
31 SONG X Y, SUN X M, OH S F, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415.
32 LI W, HANG S Y, FANG Y, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1[J]. Cell Host Microbe, 2021, 29(9): 1366-1377.e9.
33 LEE J C, LYONS P A, MCKINNEY E F, et al. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis[J]. J Clin Invest, 2011, 121(10): 4170-4179.
34 DING C J, HONG Y, CHE Y, et al. Bile acid restrained T cell activation explains cholestasis aggravated hepatitis B virus infection[J]. FASEB J, 2022, 36(9): e22468.
35 ZHU C, BOUCHERON N, MüLLER A C, et al. 24-Norursodeoxycholic acid reshapes immunometabolism in CD8+ T cells and alleviates hepatic inflammation[J]. J Hepatol, 2021, 75(5): 1164-1176.
36 KHAN K J, ULLMAN T A, FORD A C, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis[J]. Am J Gastroenterol, 2011, 106(4): 661-673.
37 HU C L, LIAO S T, LV L, et al. Intestinal immune imbalance is an alarm in the development of IBD[J]. Mediators Inflamm, 2023, 2023: 1073984.
38 MA C, HAN M J, HEINRICH B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5931.
39 CHENG P, WU J W, ZONG G F, et al. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver[J]. Pharmacol Res, 2023, 188: 106643.
40 SHAO J W, GE T T, TANG C L, et al. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis[J]. Inflamm Res, 2022, 71(10/11): 1389-1401.
41 CHEN Y, LE T H, DU Q M, et al. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling[J]. Int Immunopharmacol, 2019, 71: 144-154.
42 CAMPBELL C, MCKENNEY P T, KONSTANTINOVSKY D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581(7809): 475-479.
43 FAN L N, QI Y D, QU S W, et al. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling[J]. Gut Microbes, 2021, 13(1): 1-17.
44 ALMO M M D, SOUSA I G, OLINTO V G, et al. Therapeutic effects of Zymomonas mobilis on experimental DSS-induced colitis mouse model[J]. Microorganisms, 2023, 11(11): 2793.
45 ZHOU J, LI M Y, CHEN Q F, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022, 13(1): 3432.
46 VALCHEVA R, KOLEVA P, MARTíNEZ I, et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels[J]. Gut Microbes, 2019, 10(3): 334-357.
47 AKRAM W, GARUD N, JOSHI R. Role of inulin as prebiotics on inflammatory bowel disease[J]. Drug Discov Ther, 2019, 13(1): 1-8.
48 ZHANG Z Z, PAN Y, GUO Z Y, et al. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease[J]. Bioact Mater, 2024, 33: 71-84.
49 ARMSTRONG H K, BORDING-JORGENSEN M, SANTER D M, et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients[J]. Gastroenterology, 2023, 164(2): 228-240.
50 MOAYYEDI P, SURETTE M G, KIM P T, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial[J]. Gastroenterology, 2015, 149(1): 102-109.e6.
51 COSTELLO S P, HUGHES P A, WATERS O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164.
52 SOKOL H, LANDMAN C, SEKSIK P, et al. Fecal microbiota transplantation to maintain remission in Crohn′s disease: a pilot randomized controlled study[J]. Microbiome, 2020, 8(1): 12.
53 KONG L J, LLOYD-PRICE J, VATANEN T, et al. Linking strain engraftment in fecal microbiota transplantation with maintenance of remission in Crohn's disease[J]. Gastroenterology, 2020, 159(6): 2193-2202.e5.
54 FEDERICI S, KREDO-RUSSO S, VALDéS-MAS R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16): 2879-2898.e24.
55 ZHANG L S, WANG Y D, CHEN W D, et al. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice[J]. Hepatology, 2012, 56(6): 2336-2343.
56 GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60(4): 463-472.
57 GOHDA K, IGUCHI Y, MASUDA A, et al. Design and identification of a new farnesoid X receptor (FXR) partial agonist by computational structure-activity relationship analysis: ligand-induced H8 helix fluctuation in the ligand-binding domain of FXR may lead to partial agonism[J]. Bioorg Med Chem Lett, 2021, 41: 128026.
文章导航

/