收稿日期: 2024-01-29
录用日期: 2024-06-04
网络出版日期: 2024-09-28
基金资助
国家自然科学基金(U21A20341);上海市科学技术委员会基金(20Y11910500);上海市优秀学术/技术带头人计划项目(21XD1432100);上海申康医院发展中心临床三年行动计划项目(SHDC2020CR2025B);上海市肿瘤研究所基金(ZZ-20-22SYL);上海交通大学医学院“双百人”项目(20172014)
Evaluation of machine learning prediction of altered inflammatory metabolic state after neoadjuvant therapy for breast cancer
Received date: 2024-01-29
Accepted date: 2024-06-04
Online published: 2024-09-28
Supported by
National Natural Science Foundation of China(U21A20341);Project of Science and Technology Commission of Shanghai Municipality(20Y11910500);Advanced Technology Leader of Science and Technology Commission of Shanghai Municipality(21XD1432100);Three-year Action Plan of Shanghai Shenkang Hospital Development Center(SHDC2020CR2025B);Project of Shanghai Cancer Institute(ZZ-20-22SYL);“Two-hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20172014)
目的·通过机器学习方法,采用临床常见实验室指标及心脏彩色多普勒超声指标,在乳腺癌患者中探究早期识别并预测新辅助治疗后发生与代谢状态改变相关的心血管疾病高风险患者的方案。方法·连续入选2020年9月—2022年9月在上海交通大学医学院附属仁济医院乳腺外科确诊的原发性浸润性乳腺癌女性患者。收集并记录患者的一般情况、实验室检查结果及心脏彩色多普勒超声结果。经过特征提取后,分别应用梯度增强(gradient boost,GB)、支持向量机(support vector machine,SVM)、决策树(decision tree,DT)、K-近邻(K-nearest neighbour,KNN)及随机森林(random forest,RF)5种机器学习方法构建新辅助治疗后患者炎症代谢状态改变预测模型,并比较5种模型的预测性能。结果·最终纳入232例有效临床数据,其中135例为新辅助治疗前,97例为完成4个周期的新辅助治疗后。特征提取筛选出白细胞计数、血红蛋白、高密度脂蛋白、白细胞介素-2受体和白细胞介素-8这5项特征。在多特征分析中,白细胞计数+血红蛋白+高密度脂蛋白的受试者操作特征曲线下面积高于白细胞介素-2受体+白细胞介素-8(RF:0.928 vs 0.772;GB:0.900 vs 0.792;SVM:0.941 vs 0.764;KNN:0.907 vs 0.762;DT:0.799 vs 0.714),并且在RF、SVM、GB模型中的曲线下面积(0.928、0.941、0.900)及准确率(0.914、0.897、0.776)较高;与RF、GB模型(P=0.122,P=0.097)相比,SVM模型在训练集数据上校准度较好(P=0.394)。结论·SVM模型可通过纳入白细胞计数、血红蛋白、高密度脂蛋白、白细胞介素-2受体、白细胞介素-8这5项临床常见指标,在乳腺癌患者中建立早期预测新辅助治疗后代谢状态改变相关心血管疾病风险的预测模型,可能有助于临床上建立基于患者炎症代谢状态的个体化筛查方案。
吴其蓁 , 刘启明 , 柴烨子 , 陶政宇 , 王依楠 , 郭欣宁 , 姜萌 , 卜军 . 机器学习预测乳腺癌新辅助治疗后炎症代谢状态改变的模型评价[J]. 上海交通大学学报(医学版), 2024 , 44(9) : 1169 -1181 . DOI: 10.3969/j.issn.1674-8115.2024.09.012
Objective ·To develop a machine learning approach for early identification of metabolic syndromes associated with inflammatory metabolic state changes in breast cancer patients after neoadjuvant therapy, using common laboratory and transthoracic echocardiography indices. Methods ·Female patients with primary invasive breast cancer diagnosed at the Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, between September 2020 and September 2022, were included. General patient information, laboratory test results, and transthoracic echocardiography data were collected. After feature extraction, five machine learning algorithms, including random forest (RF), gradient boosting (GB), support vector machine (SVM), K-nearest neighbor (KNN), and decision tree (DT), were applied to construct a prediction model for the changes of the patients′ metabolic state after neoadjuvant therapy, and the prediction performances of the five models were compared. Results ·A total of 232 cases with valid clinical data were included, comprising 135 cases before neoadjuvant therapy and 97 cases after completing 4 cycles of neoadjuvant therapy. Feature extraction identified five key features: white blood cell count, hemoglobin, high-density lipoprotein (HDL), interleukin-2 receptor, and interleukin-8. In the multi-feature analysis, the area under the receiver operating characferistic curve (AUC) was higher in the combination of white blood cell count, hemoglobin and HDL compared to the combination of interleukin-2 receptor and interleukin-8 (RF: 0.928 vs 0.772, GB: 0.900 vs 0.792, SVM: 0.941 vs 0.764, KNN: 0.907 vs 0.762, DT: 0.799 vs 0.714). The RF, SVM, and GB models showed higher AUC (0.928, 0.941, 0.900) and accuracy (0.914, 0.897, 0.776). The SVM model exhibited superior accuracy in the training data compared to the RF and GB models (P=0.394, 0.122 and 0.097, respectively). Conclusion ·The SVM model can be used to establish a prediction model for identifying breast cancer patients at high risk of developing inflammatory metabolic state-related metabolic syndrome after neoadjuvant therapy by incorporating five common clinical indicators, namely, white blood cell count, hemoglobin, high-density lipoprotein, interleukin-2 receptor, and interleukin-8. SVM modeling may be useful for clinicians to establish individualized screening protocols based on a patient′s inflammatory metabolic state.
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
3 | RAMIN C, SCHAEFFER M L, ZHENG Z, et al. All-Cause and cardiovascular disease mortality among breast cancer survivors in CLUE Ⅱ, a long-standing community-based cohort[J].J Natl Cancer Inst, 2021, 113(2): 137-145. |
4 | JOHNSON K W, TORRES SOTO J, GLICKSBERG B S, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-2679. |
5 | OIKONOMOU E K, KHERA R. Machine learning in precision diabetes care and cardiovascular risk prediction[J]. Cardiovasc Diabetol, 2023, 22(1): 259. |
6 | YANG H Z, YU B X, OUYANG P, et al. Machine learning-aided risk prediction for metabolic syndrome based on 3 years study[J]. Sci Rep, 2022, 12(1): 2248. |
7 | WANG G, ZHANG Y, LI S, et al. A machine learning-based prediction model for cardiovascular risk in women with preeclampsia[J]. Front Cardiovasc Med, 2021, 8: 736491. |
8 | BETANCUR J, COMMANDEUR F, MOTLAGH M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11): 1654-1663. |
9 | ALAA A M, BOLTON T, DI ANGELANTONIO E, et al. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423, 604 UK Biobank participants[J]. PLoS One, 2019, 14(5): e0213653. |
10 | PUJADAS E R, RAISI-ESTABRAGH Z, SZABO L, et al. Prediction of incident cardiovascular events using machine learning and CMR radiomics[J]. Eur Radiol, 2023, 33(5): 3488-3500. |
11 | TAWFIQ E, SELAK V, ELWOOD J M, et al. Performance of cardiovascular disease risk prediction equations in more than 14?000 survivors of cancer in New Zealand primary care: a validation study[J]. Lancet, 2023, 401(10374): 357-365. |
12 | MENG M, ZHAO C. Application of support vector machines to a small-sample prediction[J]. Adv Petrol Explor Dev, 2015, 2(10): 72-75. |
13 | MUHAMMAD S, FAN T, HAI Y, et al. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies[J]. Mol Cancer, 2023, 22(1): 121. |
14 | HERNANDEZ R, P?DER J, LAPORTE K M, et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer[J]. Nat Rev Immunol, 2022, 22(10): 614-628. |
15 | BAGGIOLINI M, CLARK-LEWIS I. Interleukin-8, a chemotactic and inflammatory cytokine[J]. FEBS Lett, 1992, 307(1): 97-101. |
16 | LIU Y Y, ZHOU N N, ZHOU L, et al. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor[J]. Nat Immunol, 2021, 22(3): 358-369. |
17 | LIU Q, LI A, TIAN Y, et al. The CXCL8-CXCR1/2 pathways in cancer[J]. Cytokine Growth Factor Rev, 2016, 31: 61-71. |
18 | SINGH J K, SIM?ES B M, HOWELL S J, et al. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells[J]. Breast Cancer Res, 2013, 15(4): 210. |
19 | AHMED S, MOHAMED H T, EL-HUSSEINY N, et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(6): 118995. |
20 | PAN K, XU C, CHEN C, et al. Soluble interleukin-2 receptor combined with interleukin-8 is a powerful predictor of future adverse cardiovascular events in patients with acute myocardial infarction[J]. Front Cardiovasc Med, 2023, 10: 1110742. |
21 | BOUCHENTOUF M, WILLIAMS P, FORNER K A, et al. Interleukin-2 enhances angiogenesis and preserves cardiac function following myocardial infarction[J]. Cytokine, 2011, 56(3): 732-738. |
22 | APOSTOLAKIS S, VOGIATZI K, AMANATIDOU V, et al. Interleukin 8 and cardiovascular disease[J]. Cardiovasc Res, 2009, 84(3): 353-360. |
23 | KIM C S, PARK H S, KAWADA T, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters[J]. Int J Obes, 2006, 30(9): 1347-1355. |
24 | ZHAO H, HUANG R, JIANG M, et al. Myocardial tissue-level characteristics of adults with metabolically healthy obesity[J]. JACC Cardiovasc Imaging, 2023, 16(7): 889-901. |
25 | QU F, CHEN R, PENG Y, et al. Assessment of the predictive role of serum lipid profiles in breast cancer patients receiving neoadjuvant chemotherapy[J]. J Breast Cancer, 2020, 23(3): 246-258. |
26 | TAHMASSEBI A, WENGERT G J, HELBICH T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019, 54(2): 110-117. |
27 | SHI Z, HUANG X, CHENG Z, et al. MRI-based quantification of intratumoral heterogeneity for predicting treatment response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2023, 308(1): e222830. |
/
〈 |
|
〉 |