综述

慢性应激与卵巢功能减退的相关性研究进展

  • 韦柳彤 ,
  • 赖东梅
展开
  • 1.上海交通大学医学院附属国际和平妇幼保健院中心实验室,上海 200030
    2.上海市胚胎源性疾病重点实验室,上海 200030
韦柳彤(1994—),女,博士生;电子信箱:Jane199435@hotmail.com
赖东梅,电子信箱:laidongmei@hotmail.com

收稿日期: 2024-04-18

  录用日期: 2024-09-03

  网络出版日期: 2024-12-16

基金资助

国家自然科学基金(82271664);上海市卫生健康委员会科研项目(202240343);上海市胚胎源性疾病重点实验室开放课题基金(Shelab2022ZD01);上海交通大学“交大之星”计划“医工交叉研究基金”(YG2022ZD028)

Research progress in the correlation between chronic stress and ovarian dysfunction

  • Liutong WEI ,
  • Dongmei LAI
Expand
  • 1.Central Laboratory, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
    2.Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China
LAI Dongmei, E-mail: laidongmei@hotmail.com.

Received date: 2024-04-18

  Accepted date: 2024-09-03

  Online published: 2024-12-16

Supported by

National Natural Science Foundation of China(82271664);Scientific Research Program of Shanghai Municipal Health Commission(202240343);Opening Project Foundation of Shanghai Key Laboratory of Embryo Original Diseases(Shelab2022ZD01);Medical-Engineering Cross Research of Shanghai Jiao Tong University(YG2022ZD028)

摘要

卵巢是女性重要的生殖器官。卵巢功能的减退不仅影响其生育功能,更会导致女性生活质量下降。近年来的研究表明,慢性应激可通过下丘脑-垂体-肾上腺轴分泌的促肾上腺皮质激素释放激素、皮质酮和皮质醇以及交感-肾上腺-髓质轴和交感神经系统分泌的肾上腺素和去甲肾上腺素等激素直接或间接影响下丘脑-垂体-卵巢轴,并引起卵巢功能减退,包括卵巢原始卵泡过度激活、窦前卵泡和排卵前卵泡减少、卵母细胞质量下降及颗粒细胞凋亡等。该文就慢性应激与卵巢功能减退的相关性和潜在机制进行综述。

本文引用格式

韦柳彤 , 赖东梅 . 慢性应激与卵巢功能减退的相关性研究进展[J]. 上海交通大学学报(医学版), 2024 , 44(12) : 1601 -1606 . DOI: 10.3969/j.issn.1674-8115.2024.12.014

Abstract

The ovary is an important reproductive organ for women. Decreased ovarian function not only affects the reproductive capabilities, but also leads to the decline of women′s quality of life. Recent studies have shown that chronic stress affects the hypothalamic-pituitary-ovary axis directly or indirectly and leads to ovarian dysfunction-including excessive activation of primordial follicles, a reduction in preantral and preovulatory follicles, decline of oocyte quality, and granulosa cell apoptosis, through corticotropin-releasing hormone, corticosterone and cortisol secreted by the hypothalamic-pituitary-adrenal axis, as well as epinephrine and norepinephrine released by the sympathetic-adrenal-medullary axis and sympathetic nervous system. This article reviews the correlation between chronic stress and ovarian dysfunction, along with the potential mechanisms.

参考文献

1 ELSAID N, SAIED A, KANDIL H, et al. Impact of stress and hypertension on the cerebrovasculature[J]. Front Biosci (Landmark Ed), 2021, 26(12): 1643-1652.
2 KEMPURAJ D, AHMED M E, SELVAKUMAR G P, et al. Psychological stress-induced immune response and risk of Alzheimer's disease in veterans from operation enduring freedom and operation Iraqi freedom[J]. Clin Ther, 2020, 42(6): 974-982.
3 VOLARI? M, ?OJAT D, MAJNARI? L T, et al. The association between functional dyspepsia and metabolic syndrome-the state of the art[J]. Int J Environ Res Public Health, 2024, 21(2): 237.
4 ZHANG H Y, WANG M, ZHAO X, et al. Role of stress in skin diseases: a neuroendocrine-immune interaction view[J]. Brain Behav Immun, 2024, 116: 286-302.
5 中华医学会妇产科学分会绝经学组. 早发性卵巢功能不全的临床诊疗专家共识(2023版)[J]. 中华妇产科杂志, 2023, 58(10): 721-728.
5 Menopause Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. Consensus of clinical diagnosis and treatment of premature ovarian insufficiency (2023)[J]. Chinese Journal of Obstetrics and Gynecology, 2023, 58(10): 721-728.
6 European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, WEBBER L, DAVIES M, et al. ESHRE Guideline: management of women with premature ovarian insufficiency[J]. Hum Reprod, 2016, 31(5): 926-937.
7 LI M, ZHU Y, WEI J, et al. The global prevalence of premature ovarian insufficiency: a systematic review and meta-analysis[J]. Climacteric, 2023, 26(2): 95-102.
8 中华医学会妇产科学分会绝经学组. 早发性卵巢功能不全的激素补充治疗专家共识[J]. 中华妇产科杂志, 2016, 51(12): 881-886.
8 Menopause Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. Consensus of hormone replacement therapy for premature ovarian insufficiency[J]. Chinese Journal of Obstetrics and Gynecology, 2016, 51(12): 881-886.
9 BRYDGES N M, BEST C, THOMAS K L. Female HPA axis displays heightened sensitivity to pre-pubertal stress[J]. Stress, 2020, 23(2): 190-200.
10 SUN J Y, GUO Y, FAN Y H, et al. Decreased expression of IDH1 by chronic unpredictable stress suppresses proliferation and accelerates senescence of granulosa cells through ROS activated MAPK signaling pathways[J]. Free Radic Biol Med, 2021, 169: 122-136.
11 TAL R, SEIFER D B. Ovarian reserve testing: a user's guide[J]. Am J Obstet Gynecol, 2017, 217(2): 129-140.
12 VEGETTI W, ALAGNA F. FSH and folliculogenesis: from physiology to ovarian stimulation[J]. Reprod Biomed Online, 2006, 12(6): 684-694.
13 谢幸, 孔北华, 段涛. 妇产科学[M]. 9版. 北京: 人民卫生出版社, 2018: 20-28.
13 XIE X, KONG B H, DUAN T. Obstetrics and gynecology[M]. 9th ed. Beijing: People's Medical Publishing House, 2018: 20-28.
14 KRUSZY?SKA A, S?OWI?SKA-SRZEDNICKA J. Anti-Müllerian hormone (AMH) as a good predictor of time of menopause[J]. Prz Menopauzalny, 2017, 16(2): 47-50.
15 SUN J Y, FAN Y H, GUO Y, et al. Chronic and cumulative adverse life events in women with primary ovarian insufficiency: an exploratory qualitative study[J]. Front Endocrinol (Lausanne), 2022, 13: 856044.
16 YE?IN G F, DESDICIO?LU R, SE?EN E ?, et al. Low anti-Mullerian hormone levels are associated with the severity of anxiety experienced by healthcare professionals during the COVID-19 pandemic[J]. Reprod Sci, 2022, 29(2): 627-632.
17 DONG Y Z, ZHOU F J, SUN Y P. Psychological stress is related to a decrease of serum anti-Müllerian hormone level in infertile women[J]. Reprod Biol Endocrinol, 2017, 15(1): 51.
18 PAL L, BEVILACQUA K, SANTORO N F. Chronic psychosocial stressors are detrimental to ovarian reserve: a study of infertile women[J]. J Psychosom Obstet Gynaecol, 2010, 31(3): 130-139.
19 XI W Y, MAO H, CUI Z W, et al. Scream sound-induced chronic psychological stress results in diminished ovarian reserve in adult female rat[J]. Endocrinology, 2022, 163(6): bqac042.
20 KIM J, YOU S. High housing density-induced chronic stress diminishes ovarian reserve via granulosa cell apoptosis by angiotensin Ⅱ overexpression in mice[J]. Int J Mol Sci, 2022, 23(15): 8614.
21 JIANG Y W, XU J, TAO C Q, et al. Chronic stress induces meiotic arrest failure and ovarian reserve decline via the cAMP signaling pathway[J]. Front Endocrinol (Lausanne), 2023, 14: 1177061.
22 XU M H, SUN J Y, WANG Q, et al. Chronic restraint stress induces excessive activation of primordial follicles in mice ovaries[J]. PLoS One, 2018, 13(3): e0194894.
23 FU X Y, ZHENG Q, ZHANG N, et al. CUMS promotes the development of premature ovarian insufficiency mediated by nerve growth factor and its receptor in rats[J]. Biomed Res Int, 2020, 2020: 1946853.
24 NAIR B B, KHANT AUNG Z, PORTEOUS R, et al. Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice[J]. J Neuroendocrinol, 2021, 33(5): e12972.
25 SUN J Y, GUO Y, ZHANG Q W, et al. Chronic restraint stress disturbs meiotic resumption through APC/C-mediated cyclin B1 excessive degradation in mouse oocytes[J]. Cell Cycle, 2018, 17(13): 1591-1601.
26 GUO Y, SUN J Y, BU S X, et al. Melatonin protects against chronic stress-induced oxidative meiotic defects in mice MII oocytes by regulating SIRT1[J]. Cell Cycle, 2020, 19(13): 1677-1695.
27 ZHAO X L, MA R H, ZHANG X Y, et al. Transcriptomic study of the mechanism by which the Kai Yu Zhong Yu recipe improves oocyte quality in a stressed mouse model[J]. J Ethnopharmacol, 2021, 278: 114298.
28 SEN A, CAIAZZA F. Oocyte maturation: a story of arrest and release[J]. Front Biosci (Schol Ed), 2013, 5(2): 451-477.
29 ZHAO X L, MA R H, ZHANG X Y, et al. Reduced growth capacity of preimplantation mouse embryos in chronic unpredictable stress model[J]. Mol Reprod Dev, 2021, 88(1): 80-95.
30 CASILLAS F, BETANCOURT M, JUáREZ-ROJAS L, et al. Chronic stress detrimentally affects in vivo maturation in rat oocytes and oocyte viability at all phases of the estrous cycle[J]. Animals (Basel), 2021, 11(9): 2478.
31 GAO Y, CHEN F, KONG Q Q, et al. Stresses on female mice impair oocyte developmental potential: effects of stress severity and duration on oocytes at the growing follicle stage[J]. Reprod Sci, 2016, 23(9): 1148-1157.
32 CHROUSOS G P, GOLD P W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis[J]. JAMA, 1992, 267(9): 1244-1252.
33 GLASER R, KIECOLT-GLASER J K. Stress-induced immune dysfunction: implications for health[J]. Nat Rev Immunol, 2005, 5(3): 243-251.
34 KIAPEKOU E, ZAPANTI E, MASTORAKOS G, et al. Update on the role of ovarian corticotropin-releasing hormone[J]. Ann N Y Acad Sci, 2010, 1205: 225-229.
35 LI C Y, LI Z B, KONG Q Q, et al. Restraint-induced corticotrophin-releasing hormone elevation triggers apoptosis of ovarian cells and impairs oocyte competence via activation of the Fas/FasL system[J]. Biol Reprod, 2018, 99(4): 828-837.
36 DI NATALE M R, SOCH A, ZIKO I, et al. Chronic predator stress in female mice reduces primordial follicle numbers: implications for the role of ghrelin[J]. J Endocrinol, 2019, 241(3): 201-219.
37 BENITEZ A, RIQUELME R, DEL CAMPO M, et al. Nerve growth factor: a dual activator of noradrenergic and cholinergic systems of the rat ovary[J]. Front Endocrinol (Lausanne), 2021, 12: 636600.
38 RIQUELME R, RUZ F, MAYERHOFER A, et al. Role of ovarian sympathetic nerves and cholinergic local system during cold stress[J]. J Endocrinol, 2019, 242(2): 115-124.
39 LI M, XUE L, XU W B, et al. Rno-miR-128-3p promotes apoptosis in rat granulosa cells (GCs) induced by norepinephrine through Wilms tumor 1 (WT1)[J]. In Vitro Cell Dev Biol Anim, 2021, 57(8): 775-785.
40 RETANA-MáRQUEZ S, JUáREZ-ROJAS L, áVILA-QUINTERO A, et al. Neuroendocrine disruption is associated to infertility in chronically stressed female rats[J]. Reprod Biol, 2020, 20(4): 474-483.
41 HUANG Y Q, LIU Q Y, HUANG G F, et al. Hypothalamic kisspeptin neurons regulates energy metabolism and reproduction under chronic stress[J]. Front Endocrinol (Lausanne), 2022, 13: 844397.
42 HARTER C J L, KAVANAGH G S, SMITH J T. The role of kisspeptin neurons in reproduction and metabolism[J]. J Endocrinol, 2018, 238(3): R173-R183.
43 SAHIN Z, OZKURKCULER A, KALKAN O F, et al. Gonadotropin levels reduced in seven days immobilization stress-induced depressive-like behavior in female rats[J]. J Basic Clin Physiol Pharmacol, 2021, 33(2): 199-206.
44 RUSSELL G, LIGHTMAN S. The human stress response[J]. Nat Rev Endocrinol, 2019, 15(9): 525-534.
45 OSTER H, CHALLET E, OTT V, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids[J]. Endocr Rev, 2017, 38(1): 3-45.
46 LUO E, STEPHENS S B, CHAING S, et al. Corticosterone blocks ovarian cyclicity and the LH surge via decreased kisspeptin neuron activation in female mice[J]. Endocrinology, 2016, 157(3): 1187-1199.
47 WANG Y, LIU W J, DU J, et al. NGF promotes mouse granulosa cell proliferation by inhibiting ESR2 mediated down-regulation of CDKN1A[J]. Mol Cell Endocrinol, 2015, 406: 68-77.
48 GHATEBI M, ZAVAREH S, LASHKARBOLOUKI T, et al. Implications from early life stress on the development of mouse ovarian follicles: focus on oxidative stress[J]. J Obstet Gynaecol Res, 2019, 45(8): 1506-1514.
文章导航

/