录用日期: 2024-08-16
网络出版日期: 2025-01-28
基金资助
国家重点研发计划(2021YFC2301502);上海交通大学“交大之星”计划医工交叉研究基金(YG2023ZD02);市级医院临床管理优化项目(SHDC22021207)
Role of tumor necrosis factor-α in coronavirus disease 2019-associated kidney injury
Accepted date: 2024-08-16
Online published: 2025-01-28
Supported by
National Key Research and Development Program of China(2021YFC2301502);the Fundamental Research Funds for the Central Universities(YG2023ZD02);Municipal Hospital Clinical Management Optimization Project(SHDC22021207)
目的·筛选新型冠状病毒感染(coronavirus disease-2019,COVID-19)患者合并肾损伤(kidney injury,KI)的相关标志物,探讨新型冠状病毒蛋白通过影响肾脏细胞与巨噬细胞间相互作用参与肾损伤的相关机制。方法·回顾性分析2022年12月—2023年2月上海交通大学医学院第九人民医院收治的COVID-19合并KI患者的临床特征,采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测血清中的炎症因子和趋化因子水平。体外用严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus-2,SARS-CoV-2)重组刺突蛋白S1亚基刺激人巨噬细胞系THP-1后,收集细胞和培养上清,通过实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)和ELISA检测炎症因子和趋化因子的水平。利用S1蛋白刺激THP-1的细胞培养上清制备条件培养基,体外刺激人肾上皮细胞系HK-2,并检测HK-2细胞分泌细胞因子的能力。采用抗体阻断实验分析条件培养基对HK-2细胞产生细胞因子的影响。结果·在39例COVID-19患者中,有8例(20.50%)血清肌酐水平高于正常参考范围,提示这些患者可能合并KI。ELISA结果显示COVID-19合并KI组患者外周肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)水平[(18.33±8.20)pg/mL]显著高于未合并KI组[(11.88±6.50)pg/mL](P=0.015)。体外实验结果显示S1蛋白可以刺激THP-1胞内TNF-α、白细胞介素-1β(interleukin-1β,IL-1β)和C-X-C基序趋化因子配体10(chemokine C-X-C motif ligand 10,CXCL10)基因转录水平上升,同时刺激THP-1高表达TNF-α、IL-1β和CXCL10(P<0.001)。进一步研究发现,利用S1蛋白刺激THP-1的细胞培养上清制备的条件培养基能促进HK-2细胞表达TNF-α(P=0.005)。而采用抗TNF-α抗体(英夫利昔单抗,infliximab)阻断条件培养基中的TNF-α后,HK-2细胞表达TNF-α的水平显著降低(P<0.001)。结论·TNF-α在COVID-19合并KI患者中明显增高,提示TNF-α是COVID-19合并KI的重要炎症因子。细胞学实验证实新冠病毒S1蛋白可以诱导巨噬细胞分泌TNF-α,进而促进肾脏细胞炎症水平的增加,可能是COVID-19合并KI发生的主要原因。因此,靶向TNF-α有望成为降低COVID-19合并KI发生率的潜在新策略。
PANDIT Roshan , 卢君瑶 , 何立珩 , 包玉洁 , 季萍 , 陈颖盈 , 许洁 , 王颖 . 肿瘤坏死因子-α在新型冠状病毒感染合并肾损伤中的作用[J]. 上海交通大学学报(医学版), 2025 , 45(1) : 1 -10 . DOI: 10.3969/j.issn.1674-8115.2025.01.001
Objective ·To identify relevant biomarkers for patients with coronavirus disease 2019-associated kidney injury (COVID-19-associated KI) and explore the mechanisms underlying the involvement of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proteins in infection-related KI by affecting the interactions between renal cells and macrophages. Methods ·A retrospective analysis was conducted on the clinical characteristics of COVID-19 patients with KI treated in Shanghai Ninth, People′s, hospital from December 2022 to February 2023. Serum levels of inflammatory factors and chemokines were measured by using enzyme- linked immunosorbent assay (ELISA). In vitro, human macrophage cell line THP-1 cells were stimulated with recombinant S1 subunit protein derived from SARS-CoV-2 spike protein. The cells and culture supernatants were collected to detect the levels of inflammatory factors and chemokines by using quantitative real-time PCR (qRT-PCR) and ELISA. Conditioned medium was prepared from the cell culture supernatants of S1-stimulated THP-1 cells and used to stimulate human renal epithelial cells (HK-2) in vitro to assess cytokine secretion. Antibody blocking experiments were performed to analyze the effects of the conditioned medium on the production of cytokines in HK-2 cells. Results ·Among 39 patients with COVID-19, 8 (20.50%) had creatinine levels above the reference interval, which indicated the occurrence of KI. The levels of peripheral tumor necrosis factor-α (TNF-α) in the COVID-19 patient with KI group [(18.33±8.20) pg/mL] were significantly higher than those in the non-KI group [(11.88±6.50) pg/mL] (P=0.015). In vitro assay has shown that S1-spike protein stimulation promoted the level of gene transcription and production of TNF-α, interleukin-1β (IL-1β) and chemokine C-X-C motif ligand 10 (CXCL10) in THP-1 macrophage cells (P<0.001). Furthermore, the conditioned medium from S1-stimulated THP-1 cells promoted the secretion of TNF-α, IL-1β and CXCL10 by HK-2 cells (P=0.005). When anti-TNF-α antibody (Infliximab) was used to block TNF-α in the culture supernatants from S1-stimulated THP-1 cells, the secretion level of TNF-α by HK-2 cells decreased dramatically (P<0.001). Conclusion ·TNF-α levels increase significantly in COVID-19 patients with KI, implying the significance of TNF-α in the occurrence of COVID-19-associated KI. In vitro experiments confirm that the S1 protein induces TNF-α secretion from THP-1 cells, leading to increased inflammatory responses in renal cells, which may contribute to the development of COVID-19-associated KI. Therefore, targeting TNF-α may become an alternative strategy to reduce the occurrence of COVID-19-associated KI.
1 | MOKHTARI T, HASSANI F, GHAFFARI N, et al. COVID-19 and multiorgan failure: a narrative review on potential mechanisms[J]. J Mol Histol, 2020, 51(6): 613-628. |
2 | JEWELL P D, BRAMHAM K, GALLOWAY J, et al. COVID-19-related acute kidney injury; incidence, risk factors and outcomes in a large UK cohort[J]. BMC Nephrol, 2021, 22(1): 359. |
3 | SCHIFFL H, LANG S M. Long-term interplay between COVID-19 and chronic kidney disease[J]. Int Urol Nephrol, 2023, 55(8): 1977-1984. |
4 | VOLBEDA M, JOU-VALENCIA D, van den HEUVEL M C, et al. Acute and chronic histopathological findings in renal biopsies in COVID-19[J]. Clin Exp Med, 2023, 23(4): 1003-1014. |
5 | 陈成, 张小容, 鞠振宇, 等. 新型冠状病毒肺炎引发细胞因子风暴的机制及相关免疫治疗研究进展[J]. 中华烧伤杂志, 2020, 36(6): 471-475. |
CHEN C, ZHANG X R, JU Z Y, et al. Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019[J]. Zhonghua Shao Shang Za Zhi, 2020, 36(6): 471-475. | |
6 | JIANG Y Z, RUBIN L, PENG T M, et al. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy[J]. Int J Biol Sci, 2022, 18(2): 459-472. |
7 | CHEUNG M D, ERMAN E N, MOORE K H, et al. Resident macrophage subpopulations occupy distinct microenvironments in the kidney[J]. JCI Insight, 2022, 7(20): e161078. |
8 | KHAN S, SHAFIEI M S, LONGORIA C, et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway[J]. eLife, 2021, 10: e68563. |
9 | SCARPIONI R, VALSANIA T, ALBERTAZZI V, et al. Acute kidney injury, a common and severe complication in hospitalized patients during the COVID-19 pandemic[J]. J Nephrol, 2021, 34(4): 1019-1024. |
10 | VAIDYA V S, FERGUSON M A, BONVENTRE J V. Biomarkers of acute kidney injury[J]. Annu Rev Pharmacol Toxicol, 2008, 48: 463-493. |
11 | LIU H C, XU X, DENG X, et al. Projecting the potential impact of an Omicron XBB.1.5 wave in Shanghai, China[EB/OL]. medRxiv preprint, medRxiv: 2023:2023.05.10.23289761 (2023-05-10) [2024-05-20]. https://www.medrxiv.org/content/10.1101/2023.05.10.23289761v1.full.pdf |
12 | ZHANG X X, ZHANG W H, CHEN S J. Shanghai′s life-saving efforts against the current Omicron wave of the COVID-19 pandemic[J]. Lancet, 2022, 399(10340): 2011-2012. |
13 | SILVER S A, BEAUBIEN-SOULIGNY W, SHAH P S, et al. The prevalence of acute kidney injury in patients hospitalized with COVID-19 infection: a systematic review and meta-analysis[J]. Kidney Med, 2021, 3(1): 83-98.e1. |
14 | ZHENG X Z, ZHAO Y L, YANG L. Acute kidney injury in COVID-19: the Chinese experience[J]. Semin Nephrol, 2020, 40(5): 430-442. |
15 | CHEN K H, LEI Y, HE Y N, et al. Clinical outcomes of hospitalized COVID-19 patients with renal injury: a multi-hospital observational study from Wuhan[J]. Sci Rep, 2021, 11(1): 15205. |
16 | LIU R, WANG Y, LI J, et al. Decreased T cell populations contribute to the increased severity of COVID-19[J]. Clin Chim Acta, 2020, 508: 110-114. |
17 | DIAO B, WANG C H, TAN Y J, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19)[J]. Front Immunol, 2020, 11: 827. |
18 | WILLIAMS R O, FELDMANN M, MAINI R N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis[J]. Proc Natl Acad Sci U S A, 1992, 89(20): 9784-9788. |
19 | XU X L, HAN M F, LI T T, et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci USA, 2020, 117(20): 10970-10975. |
20 | WANG J J, YANG X J, LI Y S, et al. Specific cytokines in the inflammatory cytokine storm of patients with COVID-19-associated acute respiratory distress syndrome and extrapulmonary multiple-organ dysfunction[J]. Virol J, 2021, 18(1): 117. |
21 | MEDEIROS T, GUIMAR?ES G M C, CARVALHO F R, et al. Acute kidney injury associated to COVID-19 leads to a strong unbalance of circulant immune mediators[J]. Cytokine, 2022, 157: 155974. |
22 | SHIRATO K, KIZAKI T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages[J]. Heliyon, 2021, 7(2): e06187. |
23 | ZHAO Y C, KUANG M, LI J H, et al. SARS-CoV-2 spike protein interacts with and activates TLR41[J]. Cell Res, 2021, 31(7): 818-820. |
24 | CHIOK K, HUTCHISON K, MILLER L G, et al. Proinflammatory responses in SARS-CoV-2 and soluble spike glycoprotein S1 subunit activated human macrophages[J]. Viruses, 2023, 15(3): 754. |
25 | DIAMOND J R, PESEK I. Glomerular tumor necrosis factor and interleukin 1 during acute aminonucleoside nephrosis. An immunohistochemical study[J]. Lab Invest, 1991, 64(1): 21-28. |
26 | TIPPING P G, LEONG T W, HOLDSWORTH S R. Tumor necrosis factor production by glomerular macrophages in anti-glomerular basement membrane glomerulonephritis in rabbits[J]. Lab Invest, 1991, 65(3): 272-279. |
27 | LIAN Q Z, ZHANG K, ZHANG Z, et al. Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model[J]. Nat Commun, 2022, 13(1): 2028. |
28 | NEALE T J, RüGER B M, MACAULAY H, et al. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy[J]. Am J Pathol, 1995, 146(6): 1444-1454. |
29 | CANTERO-NAVARRO E, RAYEGO-MATEOS S, OREJUDO M, et al. Role of macrophages and related cytokines in kidney disease[J]. Front Med (Lausanne), 2021, 8: 688060. |
/
〈 |
|
〉 |