论著 · 基础研究

多发性硬化症小胶质细胞转录调控网络分析

  • 蔡蔷薇 ,
  • 孙锋 ,
  • 吴文玉 ,
  • 邵付明 ,
  • 高正良 ,
  • 金盛凯
展开
  • 1.上海大学医学院,上海大学附属南通医院老年医学研究院,南通 201613
    2.海军军医大学附属公利医院麻醉科,上海 200135
    3.上海大学医学院中日友好医学研究所,上海 200444
    4.同济大学医学院,上海市养志康复医院基础研究中心,上海 200065
蔡蔷薇(1996—),女,硕士生;电子信箱:656675148@qq.com
高正良,研究员,博士;电子信箱:zhengliang_gao@tongji.edu.cn
金盛凯,博士;电子信箱:jinsk1223@163.com

收稿日期: 2024-05-23

  录用日期: 2024-07-02

  网络出版日期: 2025-01-17

Transcriptional regulatory network analysis of microglia in multiple sclerosis

  • CAI Qiangwei ,
  • SUN Feng ,
  • WU Wenyu ,
  • SHAO Fuming ,
  • GAO Zhengliang ,
  • JIN Shengkai
Expand
  • 1.Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, School of Medicine, Shanghai University, Nantong 201613, China
    2.Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
    3.China-Japan Friendship Medical Research Institute, School of Medicine, Shanghai University, Shanghai 200444, China
    4.Shanghai YangZhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai 200065, China
GAO Zhengliang, E-mail: zhengliang_gao@tongji.edu.cn
JIN Shengkai, E-mail: jinsk1223@163.com.

Received date: 2024-05-23

  Accepted date: 2024-07-02

  Online published: 2025-01-17

摘要

目的·通过单细胞核转录组分析,探讨多发性硬化症(multiple sclerosis,MS)中小胶质细胞在灰质与白质的基因差异性表达及其在疾病进展中的作用,鉴定疾病相关的关键转录调控网络。方法·从基因表达数据库(Gene Expression Omnibus,GEO)中获取MS和对照冷冻人脑组织样本单细胞核转录组测序(single nucleus RNA sequencing,snRNA-seq)数据。使用R软件和Seurat软件等,利用特定的细胞标志物对数据进行细胞类型的鉴定。从鉴定的细胞群中提取小胶质细胞,根据其解剖来源将其分为灰质和白质小胶质细胞;利用降维聚类技术,获得具有差异性的小胶质细胞亚群。使用Seurat分析得到MS组与对照组在亚群层面上的差异表达基因(differentially expressed genes,DEGs)。对DEGs进行基因本体论(Gene Ontology,GO)分析与京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析,进一步探究这些差异的生物学意义。使用Monocle3进行拟时序分析,研究疾病进展中的细胞亚群动态变化。使用单细胞调控网络推理和聚类(single cell regulatory network inference and clustering,SCENIC)方法分析转录因子(transcription factor,TF)调控网络,寻找可能参与MS调控的关键转录调控网络。结果·对数据进行质量控制后共保留了149 062个细胞核。对snRNA-seq数据进行降维聚类分析后,以DOCK8、CSF1R、P2RY12、CD74作为小胶质细胞的关键标志物鉴定得到了12 238个小胶质细胞。GO和KEGG分析结果表明,灰质小胶质细胞在疾病过程中内吞作用、离子稳态、脂质定位等功能下调,白质小胶质细胞在疾病过程中蛋白质折叠、细胞质翻译、温度刺激响应等功能上调。SCENIC分析显示MS疾病中FLI1、MITF、FOXP1等TF的表达上调。结论·小胶质细胞在MS的发展中具有重要作用,白质小胶质细胞受到MS的影响比灰质小胶质细胞更为明显。FLI1、MITF、FOXP1等是参与MS调控的关键TF,这些转录调控网络在疾病调控中发挥核心作用。

本文引用格式

蔡蔷薇 , 孙锋 , 吴文玉 , 邵付明 , 高正良 , 金盛凯 . 多发性硬化症小胶质细胞转录调控网络分析[J]. 上海交通大学学报(医学版), 2025 , 45(1) : 29 -41 . DOI: 10.3969/j.issn.1674-8115.2025.01.004

Abstract

Objective ·To investigate the differential gene expression of microglia in the gray and white matter of multiple sclerosis (MS) using single-nucleus transcriptomic analysis, aiming to explore their roles in disease progression, and identify key transcriptional regulatory networks associated with the disease. Methods ·snRNA-seq data of frozen human brain tissue samples from MS patients and control individuals were obtained from the Gene Expression Omnibus (GEO) database. R language, along with R packages such as Seurat, was employed to identify cell types based on specific cell markers. Microglia were extracted from the identified cell populations and classified based on their anatomical origin, either gray matter or white matter. Dimensionality reduction and clustering techniques were utilized to identify distinct microglial subpopulations with differential characteristics. Differentially expressed genes (DEGs) between the MS and control groups at the subpopulation level were analyzed by using the Seurat package. Gene set enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was conducted on the DEGs to further explore the biological significance of these differences. Monocle3 was used for pseudotime analysis to study dynamic changes in microglia subpopulations during disease progression. Single cell regulatory network inference and clustering (SCENIC) method was applied to analyze transcription factor (TF) regulatory networks, aiming to identify key transcription factors potentially involved in MS regulation. Results ·After quality control, a total of 149 062 nuclei were retained for analysis. Following dimensional reduction and clustering, 12 238 microglia were identified by using key markers, including DOCK8, CSF1R, P2RY12, and CD74. The results of GO and KEGG pathway analysis showed that in gray matter microglia, functions such as endocytosis, ion homeostasis, and lipid localization were downregulated during disease progression, while in white matter microglia, functions such as protein folding, cytoplasmic translation, and response to thermal stimuli were upregulated. SCENIC analysis revealed that the expression of transcription factors such as FLI1, MITF, and FOXP1 was upregulated in MS. Conclusion ·Microglia play a critical role in MS, with white matter microglia being more significantly impacted by MS than their gray matter counterparts. Transcription factors such as FLI1, MITF, and FOXP1 are identified as key regulators involved in disease modulation, with their associated transcriptional regulatory networks playing a central role in disease modulation.

参考文献

1 BENEDICT R H B, AMATO M P, DELUCA J, et al. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues[J]. Lancet Neurol, 2020, 19(10): 860-871.
2 BANWELL B, BENNETT J L, MARIGNIER R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD Panel proposed criteria[J]. Lancet Neurol, 2023, 22(3): 268-282.
3 KUHLMANN T, MOCCIA M, COETZEE T, et al. Multiple sclerosis progression: time for a new mechanism-driven framework[J]. Lancet Neurol, 2023, 22(1): 78-88.
4 谭红梅, 全超. 多发性硬化疾病修正治疗进展[J]. 重庆医科大学学报, 2024, 49(5): 588-592.
  TAN H M, QUAN C. Advances in disease-modifying therapy for multiple sclerosis[J]. Journal of Chongqing Medical University, 2024, 49(5): 588-592.
5 FAISSNER S, PLEMEL J R, GOLD R, et al. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18: 905-922.
6 BORST K, DUMAS A A, PRINZ M. Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208.
7 PRINZ M, JUNG S, PRILLER J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
8 LUKENS J R, EYO U B. Microglia and neurodevelopmental disorders[J]. Annu Rev Neurosci, 2022, 45: 425-445.
9 DADWAL S, HENEKA M T. Microglia heterogeneity in health and disease[J]. FEBS Open Bio, 2024, 14(2): 217-229.
10 MADORE C, YIN Z, LEIBOWITZ J, et al. Microglia, lifestyle stress, and neurodegeneration[J]. Immunity, 2020, 52(2): 222-240.
11 KENT S A, MIRON V E. Microglia regulation of central nervous system myelin health and regeneration[J]. Nat Rev Immunol, 2024, 24: 49-63.
12 MCNAMARA N B, MUNRO D A D, BESTARD-CUCHE N, et al. Microglia regulate central nervous system myelin growth and integrity[J]. Nature, 2023, 613: 120-129.
13 YONG V W. Microglia in multiple sclerosis: protectors turn destroyers[J]. Neuron, 2022, 110(21): 3534-3548.
14 LLOYD A F, MIRON V E. The pro-remyelination properties of microglia in the central nervous system[J]. Nat Rev Neurol, 2019, 15: 447-458.
15 ZHAO S, UMPIERRE A D, WU L J. Tuning neural circuits and behaviors by microglia in the adult brain[J]. Trends Neurosci, 2024, 47(3): 181-194.
16 SHERAFAT A, PFEIFFER F, REISS A M, et al. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor[J]. Nat Commun, 2021, 12: 2265.
17 DONG Y F, D′MELLO C, PINSKY W, et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia[J]. Nat Neurosci, 2021, 24: 489-503.
18 LAMPRON A, LAROCHELLE A, LAFLAMME N, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes[J]. J Exp Med, 2015, 212(4): 481-495.
19 RAWJI K S, YOUNG A M H, GHOSH T, et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system[J]. Acta Neuropathol, 2020, 139(5): 893-909.
20 HAGAN N, KANE J L, GROVER D, et al. CSF1R signaling is a regulator of pathogenesis in progressive MS[J]. Cell Death Dis, 2020, 11: 904.
21 HWANG D, SEYEDSADR M S, ISHIKAWA L L W, et al. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation[J]. Proc Natl Acad Sci USA, 2022, 119(14): e2111804119.
22 MARZAN D E, BRüGGER-VERDON V, WEST B L, et al. Activated microglia drive demyelination via CSF1R signaling[J]. Glia, 2021, 69(6): 1583-1604.
23 TAHMASEBI F, PASBAKHSH P, MORTEZAEE K, et al. Effect of the CSF1R inhibitor PLX3397 on remyelination of corpus callosum in a cuprizone-induced demyelination mouse model[J]. J Cell Biochem, 2019, 120(6): 10576-10586.
24 VOET S, PRINZ M, VAN LOO G. Microglia in central nervous system inflammation and multiple sclerosis pathology[J]. Trends Mol Med, 2019, 25(2): 112-123.
25 SEN M K, MAHNS D A, COORSSEN J R, et al. The roles of microglia and astrocytes in phagocytosis and myelination: insights from the cuprizone model of multiple sclerosis[J]. Glia, 2022, 70(7): 1215-1250.
26 JAKIMOVSKI D, BITTNER S, ZIVADINOV R, et al. Multiple sclerosis[J]. Lancet, 2024, 403(10422):183-202.
27 FRISCHER J M, BRAMOW S, DAL-BIANCO A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains[J]. Brain, 2009, 132(5): 1175-1189.
28 ABSINTA M, MARIC D, GHARAGOZLOO M, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis[J]. Nature, 2021, 597: 709-714.
29 CLARK I C, GUTIéRREZ-VáZQUEZ C, WHEELER M A, et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation[J]. Science, 2021, 372(6540): eabf1230.
30 SCHIRMER L, VELMESHEV D, HOLMQVIST S, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis[J]. Nature, 2019, 573: 75-82.
31 J?KEL S, AGIRRE E, MENDANHA FALC?O A, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis[J]. Nature, 2019, 566: 543-547.
32 KISS M G, MINDUR J E, YATES A G, et al. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis[J]. Immunity, 2023, 56(7): 1502-1514.e8.
33 MIEDEMA A, GERRITS E, BROUWER N, et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter[J]. Acta Neuropathol Commun, 2022, 10(1): 8.
34 HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587.e29.
35 HAFEMEISTER C, SATIJA R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296.
36 KORSUNSKY I, MILLARD N, FAN J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony[J]. Nat Meth, 2019, 16: 1289-1296.
37 HU C, LI T, XU Y, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J]. Nucleic Acids Res, 2023, 51(d1): D870-D876.
38 WU T, HU E, XU S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation (Camb), 2021, 2(3): 100141.
39 YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
40 TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32: 381-386.
41 QIU X J, HILL A, PACKER J, et al. Single-cell mRNA quantification and differential analysis with Census[J]. Nat Meth, 2017, 14: 309-315.
42 QIU X J, MAO Q, TANG Y, et al. Reversed graph embedding resolves complex single-cell trajectories[J]. Nat Meth, 2017, 14: 979-982.
43 CAO J Y, SPIELMANN M, QIU X J, et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566: 496-502.
44 AIBAR S, GONZáLEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Meth, 2017, 14: 1083-1086.
45 H?NZELMANN S, CASTELO R, GUINNEY J. GSVA: gene set variation analysis for microarray and RNA-seq data[J]. BMC Bioinformatics, 2013, 14: 7.
46 RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
47 KOOI E J, STRIJBIS E M, VAN DER VALK P, et al. Heterogeneity of cortical lesions in multiple sclerosis: clinical and pathologic implications[J]. Neurology, 2012, 79(13): 1369-1376.
48 SINGHAL T, O′CONNOR K, DUBEY S, et al. Gray matter microglial activation in relapsing vs progressive MS: a[F-18]PBR06-PET study[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 6(5): e587.
49 FAN L Y, YANG J, LIU R Y, et al. Integrating single-nucleus sequence profiling to reveal the transcriptional dynamics of Alzheimer′s disease, Parkinson's disease, and multiple sclerosis[J]. J Transl Med, 2023, 21(1): 649.
50 ZINATIZADEH M R, SCHOCK B, CHALBATANI G M, et al. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases[J]. Genes Dis, 2021, 8(3): 287-297.
文章导航

/