论著 · 临床研究

18F]F-FMISO和[18F]F-FLT PET/CT双核素显像预测胰腺癌耐药性的体内研究

  • 孙晨玮 ,
  • 海汪溪 ,
  • 屈骞 ,
  • 席云
展开
  • 上海交通大学医学院附属瑞金医院核医学科,上海 200025
孙晨玮(1984—),男,助理工程师,学士;电子信箱:poorpush@163.com
席 云,副主任医师,博士;电子信箱:cloudylanhuit@163.com

收稿日期: 2024-06-18

  录用日期: 2024-08-27

  网络出版日期: 2025-01-28

基金资助

国家自然科学基金(81801728)

[18F]F-FMISO and [18F]F-FLT PET/CT dual-nuclide imaging for in vivo prediction of drug resistance in pancreatic cancer

  • SUN Chenwei ,
  • HAI Wangxi ,
  • QU Qian ,
  • XI Yun
Expand
  • Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
XI Yun, E-mail: cloudylanhuit@163.com.

Received date: 2024-06-18

  Accepted date: 2024-08-27

  Online published: 2025-01-28

Supported by

National Natural Science Foundation of China(81801728)

摘要

目的·[18F]氟代甲基咪唑([18F]fluormisonidazole,[18F]F-FMISO)和[18F]氟代脱氧胸腺嘧啶核苷([18F]fluorothymidine,[18F]F-FLT)分别是乏氧微环境及细胞增殖状态的特异性PET分子显像剂。该研究拟通过[18F]F-FMISO和[18F]F-FLT PET/CT双核素显像可视化监测胰腺癌耐药性对上述2种状态影响的变化规律,为临床转化提供理论依据。方法·采用CCK-8实验验证胰腺癌耐药细胞株PANC-1/R(PR)相对于亲代细胞株PANC-1(P)的耐药性。BALB/c雄性裸鼠左侧腋窝皮下接种胰腺癌细胞建立皮下移植瘤模型。设置亚组,分别为接种肿瘤细胞后第12天、第18天开始给予吉西他滨(gemcitabine,GEM)化疗(12D-G组和18D-G组)。于治疗前后同期行[18F]F-FMISO和[18F]F-FLT PET/CT显像,获得半定量指标(maximum standardized uptake value,SUVmax),计算ΔSUVmax=(第二次显像SUVmax-第一次显像SUVmax)/第一次显像SUVmax。通过勾画受试者工作特征曲线(receiver operating characteristic curve,ROC)获得各半定量参数判断胰腺癌耐药性的最佳阈值。结果·CCK-8实验证实PR具有对GEM的高度耐药性,耐药指数为4.24(n=5)。体内实验通过对比肿瘤生长速率和生存分析证实,亲代胰腺癌早期给予GEM化疗抑制肿瘤生长更显著,延长了生存时间(12D-G组,P=0.025),而耐药胰腺癌给予GEM化疗加速肿瘤生长,生存时间缩短(18D-G和12D-G,均P=0.025)。其次,非化疗组ΔSUVmax-FLT与生存时间呈负相关;化疗组ΔSUVmax-FMISO和ΔSUVmax-FLT与生存时间均呈负相关(P=0.050,P=0.006);18D-G化疗组第二次显像P肿瘤的ΔSUVmax-FMISO和ΔSUVmax-FLT明显低于PR肿瘤(P=0.045,P=0.050);12D-G化疗组第二次显像P肿瘤的ΔSUVmax-FLT略低于PR肿瘤(P=0.051)。ROC判断胰腺癌耐药性的最佳阈值:非化疗组ΔSUVmax-FLT=0.45时,灵敏度和特异度为100.00%、50.00%;化疗组ΔSUVmax-FMISO=0.37、ΔSUVmax-FLT=0.36时,灵敏度和特异度为100.00%、83.33%。结论·[18F]F-FMISO和[18F]F-FLT PET/CT双核素显像可用于评估胰腺癌耐药性,化疗前后比较[18F]F-FMISO与[18F]F-FLT PET差值对预测胰腺癌耐药性和生存时间的准确性最佳。

本文引用格式

孙晨玮 , 海汪溪 , 屈骞 , 席云 . [18F]F-FMISO和[18F]F-FLT PET/CT双核素显像预测胰腺癌耐药性的体内研究[J]. 上海交通大学学报(医学版), 2025 , 45(1) : 60 -68 . DOI: 10.3969/j.issn.1674-8115.2025.01.007

Abstract

Objective ·[18F]F-FMISO and [18F]F-FLT are specific PET imaging agents for detecting the hypoxia microenvironment and cell proliferation, respectively. This study aims to visualize and monitor the impact of drug resistance in pancreatic cancer on the hypoxia microenvironment and cell proliferation through [18F]F-FMISO and [18F]F-FLT PET/CT dual-nuclide imaging, with the goal of providing a theoretical basis for clinical application. Methods ·The CCK-8 assay was conducted to assess drug resistance in the PANC-1/R (PR) pancreatic cancer cell line compared to the parental PANC-1 (P) cell line. Subcutaneous xenograft models of pancreatic cancer were established by injecting male BALB/c nude mice with pancreatic cancer cells into the left axillary subcutaneous region. Subgroups were treated with gemcitabine (GEM) chemotherapy starting on day 18 (18D-G group) or day 12 (12D-G group) after inoculation of tumor cells. [18F] F-FMISO and [18F] F-FLT PET/CT imaging were performed before and after treatment to obtain semi-quantitative parameters (maximum standardized uptake value, SUVmax). ΔSUVmax was calculated by using the following equation: ΔSUVmax=(SUVmax of second imaging-SUVmax of first imaging)/ SUVmax of first imaging. Receiver operating characteristic (ROC) curves were used to determine the optimal threshold for the semi-quantitative parameters to assess pancreatic cancer drug resistance. Results ·The CCK-8 assay confirmed that the PR cells exhibited high resistance to GEM, with a resistance index of 4.24 (n=5). In vivo experiments showed that GEM chemotherapy significantly inhibited tumor growth and prolonged survival in the parental pancreatic cancer group (12D-G group, P=0.025), whereas GEM chemotherapy accelerated tumor growth and shortened survival (18D-G and 12D-G, P=0.025) in the drug-resistant pancreatic cancer group. In addition, in the non-chemotherapy group, ΔSUVmax-FLT might be negatively correlated with survival time, while in the chemotherapy group, both ΔSUVmax-FMISO and ΔSUVmax-FLT were negatively correlated with survival time (P=0.050, P=0.006). In the 18D-G and chemotherapy group, the second imaging showed significantly lower ΔSUVmax-FMISO and ΔSUVmax-FLT in P tumors compared to PR tumors (P=0.045, P=0.050). In the 12D-G and chemotherapy group, the second imaging showed slightly lower ΔSUVmax-FLT in P tumors compared to PR tumors (P=0.051). ROC analysis identified the optimal threshold for assessing pancreatic cancer drug resistance: when ΔSUVmax-FLT=0.45 in the non-chemotherapy group, the sensitivity and specificity were 100.00% and 50.00%, respectively; when ΔSUVmax-FMISO=0.37 and ΔSUVmax-FLT=0.36 in the chemotherapy group, the sensitivity and specificity were 100.00% and 83.33%, respectively. Conclusion ·[18F]F-FMISO and [18F]F-FLT PET/CT dual-nuclide imaging can be used to assess drug resistance in pancreatic cancer. The comparison of [18F]F-FMISO and [18F]F-FLT PET differences before and after chemotherapy provides the most accurate prediction of drug resistance and survival time.

参考文献

1 LATENSTEIN A E J, van der GEEST L G M, BONSING B A, et al. Nationwide trends in incidence, treatmentand survival of pancreatic ductal adenocarcinoma[J]. Eur J Cancer, 2020, 125: 83-93.
2 XI Y, YUAN P, LI T, et al. hENT1 reverses chemoresistance by regulating glycolysis in pancreatic cancer[J]. Cancer Lett, 2020, 479: 112-122.
3 XI Y, GUO R, HU J J, et al. 18F-fluoro-2-deoxy-D-glucose retention index as a prognostic parameter in patients with pancreatic cancer[J]. Nucl Med Commun, 2014, 35(11): 1112-1118.
4 TOYONAGA T, HIRATA K, SHIGA T, et al. Players of ‘hypoxia orchestra’: what is the role of FMISO?[J]. Eur J Nucl Med Mol Imaging, 2017, 44(10): 1679-1681.
5 YAMANE T, AIKAWA M, YASUDA M, et al. [18F]FMISO PET/CT as a preoperative prognostic factor in patients with pancreatic cancer[J]. EJNMMI Res, 2019, 9(1): 39.
6 DOLEZEL M, SLAVIK M, BLAZEK T, et al. FMISO-based adaptive radiotherapy in head and neck cancer[J]. J Pers Med, 2022, 12(8): 1245.
7 GOUEL P, DECAZES P, VERA P, et al. Advances in PET and MRI imaging of tumor hypoxia[J]. Front Med, 2023, 10: 1055062.
8 LAMARCA A, ASSELIN M C, MANOHARAN P, et al. 18F-FLT PET imaging of cellular proliferation in pancreatic cancer[J]. Crit Rev Oncol Hematol, 2016, 99: 158-169.
9 BERGMAN A M, PINEDO H M, PETERS G J. Determinants of resistance to 2′, 2′-difluorodeoxycytidine (gemcitabine)[J]. Drug Resist Updat, 2002, 5(1): 19-33.
10 HONEYWELL R J, RUIZ van HAPEREN V W, VEERMAN G, et al. Inhibition of thymidylate synthase by 2′, 2′-difluoro-2′- deoxycytidine (gemcitabine) and its metabolite 2′, 2′-difluoro-2′- deoxyuridine[J]. Int J Biochem Cell Biol, 2015, 60: 73-81.
11 XI Y, CHEN H, XI Y, et al. Visualization research on ENT1/NIS dual-function gene therapy to reverse drug resistance mediated by MUC1 in GEM-resistant pancreatic cancer[J]. Nucl Med Biol, 2023, 120/121: 108350.
12 CARVALHO T M A, AUDERO M M, GRECO M R, et al. Tumor microenvironment modulates invadopodia activity of non-selected and acid-selected pancreatic cancer cells and its sensitivity to gemcitabine and C18-gemcitabine[J]. Cells, 2024, 13(9): 730.
13 KOHAN H G, BOROUJERDI M. Time and concentration dependency of P-gp, MRP1 and MRP5 induction in response to gemcitabine uptake in Capan-2 pancreatic cancer cells[J]. Xenobiotica, 2015, 45(7): 642-652.
14 EVANGELISTA L, ZUCCHETTA P, MOLETTA L, et al. The role of FDG PET/CT or PET/MRI in assessing response to neoadjuvant therapy for patients with borderline or resectable pancreatic cancer: a systematic literature review[J]. Ann Nucl Med, 2021, 35(7): 767-776.
15 GHIDINI M, VUOZZO M, GALASSI B, et al. The role of positron emission tomography/computed tomography (PET/CT) for staging and disease response assessment in localized and locally advanced pancreatic cancer[J]. Cancers, 2021, 13(16): 4155.
16 LEE J W, KANG C M, CHOI H J, et al. Prognostic value of metabolic tumor volume and total lesion glycolysis on preoperative 18F-FDG PET/CT in patients with pancreatic cancer[J]. J Nucl Med, 2014, 55(6): 898-904.
17 FIORE M, TARALLI S, TRECCA P, et al. A bio-imaging signature as a predictor of clinical outcomes in locally advanced pancreatic cancer[J]. Cancers, 2020, 12(8): 2016.
18 MOHAMED E, NEEDHAM A, PSARELLI E, et al. Prognostic value of 18FDG PET/CT volumetric parameters in the survival prediction of patients with pancreatic cancer[J]. Eur J Surg Oncol, 2020, 46(8): 1532-1538.
19 TAMAKI N, HIRATA K. Tumor hypoxia: a new PET imaging biomarker in clinical oncology[J]. Int J Clin Oncol, 2016, 21(4): 619-625.
20 HIRATA K, YAMAGUCHI S, SHIGA T, et al. The roles of hypoxia imaging using 18F-fluoromisonidazole positron emission tomography in glioma treatment[J]. J Clin Med, 2019, 8(8): 1088.
21 HIRATA K, WATANABE S, KITAGAWA Y, et al. A review of hypoxia imaging using 18F-fluoromisonidazole positron emission tomography[J]. Methods Mol Biol, 2024, 2755: 133-140.
22 DENG K P, ZOU F, XU J, et al. Cancer-associated fibroblasts promote stemness maintenance and gemcitabine resistance via HIF-1α/miR-21 axis under hypoxic conditions in pancreatic cancer[J]. Mol Carcinog, 2024, 63(3): 524-537.
23 CHINTAMANENI P K, PINDIPROLU S K S S, SWAIN S S, et al. Conquering chemoresistance in pancreatic cancer: exploring novel drug therapies and delivery approaches amidst desmoplasia and hypoxia[J]. Cancer Lett, 2024, 588: 216782.
24 MATHUR S, CHEN S, REJNIAK K A. Exploring chronic and transient tumor hypoxia for predicting the efficacy of hypoxia-activated pro-drugs[J]. NPJ Syst Biol Appl, 2024, 10: 1.
25 SADR-AZODI O, OSKARSSON V, DISCACCIATI A, et al. Pancreatic cancer following acute pancreatitis: a population-based matched cohort study[J]. Am J Gastroenterol, 2018, 113(11): 1711-1719.
26 COLBERT L E, FISHER S B, BALCI S, et al. High nuclear hypoxia-inducible factor 1 alpha expression is a predictor of distant recurrence in patients with resected pancreatic adenocarcinoma[J]. Int J Radiat Oncol Biol Phys, 2015, 91(3): 631-639.
27 NORIKANE T, YAMAMOTO Y, MAEDA Y, et al. Correlation of 18F-fluoromisonidazole PET findings with HIF-1α and p53 expressions in head and neck cancer: comparison with 18F-FDG PET[J]. Nucl Med Commun, 2014, 35(1): 30-35.
28 KAWAI N, LIN W, CAO W D, et al. Correlation between 18F-fluoromisonidazole PET and expression of HIF-1α and VEGF in newly diagnosed and recurrent malignant gliomas[J]. Eur J Nucl Med Mol Imaging, 2014, 41(10): 1870-1878.
29 LJUNGKVIST A S, BUSSINK J, KAANDERS J H, et al. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers[J]. Radiat Res, 2007, 167(2): 127-145.
30 SWARTZ J E, POTHEN A J, STEGEMAN I, et al. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: a systematic review[J]. Cancer Med, 2015, 4(7): 1101-1116.
31 BASHIR A, BINDERUP T, VESTERGAARD M B, et al. In vivo imaging of y in meningioma using 3′-deoxy-3′-[18F]fluorothymidine PET/MRI[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1496-1509.
32 NAKAJO M, KAJIYA Y, TANI A, et al. A pilot study of the diagnostic and prognostic values of FLT-PET/CT for pancreatic cancer: comparison with FDG-PET/CT[J]. Abdom Radiol, 2017, 42(4): 1210-1221.
33 PRETZ J L, BLAKE M A, KILLORAN J H, et al. Pilot study on the impact of F18-labeled thymidine PET/CT on gross tumor volume identification and definition for pancreatic cancer[J]. Pract Radiat Oncol, 2018, 8(3): 179-184.
34 KAFKALETOS A, MIX M, SACHPAZIDIS I, et al. The significance of partial volume effect on the estimation of hypoxic tumour volume with[18F]FMISO PET/CT[J]. EJNMMI Phys, 2024, 11(1): 43.
文章导航

/