论著 · 临床研究

纹理多参数分析在帕金森病患者脑磁化率定量中的应用研究

  • 赵欣欣 ,
  • 裴孟超
展开
  • 1.上海交通大学医学院附属仁济医院放射科,上海 200127
    2.中国科学院脑科学与智能技术卓越创新中心,上海 200031
赵欣欣(1990—),女,中级工程师,硕士;电子信箱: zhaoxinxin@renji.com.

收稿日期: 2024-08-26

  录用日期: 2024-09-27

  网络出版日期: 2025-01-28

基金资助

上海市卫生健康委员会卫生行业临床研究专项(20194Y0087)

Study on multi-parametric texture analysis for quantifying brain magnetic susceptibility in patients with Parkinson′s disease

  • ZHAO Xinxin ,
  • PEI Mengchao
Expand
  • 1.Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127
    2.Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, 200031
ZHAO Xinxin, E-mail: zhaoxinxin@renji.com.

Received date: 2024-08-26

  Accepted date: 2024-09-27

  Online published: 2025-01-28

Supported by

Clinical Research Program of Shanghai Municipal Health Commission(20194Y0087)

摘要

目的·采用基于相位线性度拟合的磁化率定量成像(quantitative susceptibility mapping,QSM)技术,定量化帕金森病(Parkinson′s disease,PD)患者脑铁含量,结合纹理分析方法,多参数、多维度定量分析帕金森病患者脑灰质核团磁化率分布特征,并结合临床评分评估纹理特征的敏感性。方法·对20名PD患者以及20名健康对照组(health control,HC)的定量磁化率图像信息进行回顾性分析,手动分割的大脑灰质核团感兴趣区域进行基于灰度游程矩阵(gray level run-length matrix,GLRLM)的三维纹理分析。使用单因素方差分析(one-way ANOVA)比较2组之间的差异,并计算双侧皮尔逊线性相关系数( r),以研究纹理参数与统一帕金森病评定量表(Unified Parkinson′s Disease Rating Scale,UPDRS)-Ⅲ临床评分的相关性。结果·纹理特征参数分析表明,PD组与HC组在灰质核团存在诸多差异性。在GLRLM的所有纹理特征参数中,LngREmph在所测量的5个灰质核团中,均显示PD组与HC组具有显著性差异。灰质核团的磁化率平均值与GLRLM纹理参数均具有较好区分PD与HC的价值(AUC>0.5)。其中RLNonUni、LngREmph、ShrtREmp以及Fraction的AUC均大于磁化率平均值的AUC。各灰质核团的GLRLM纹理特征参数与UPDRS-Ⅲ评分的相关性分析结果显示,尾状核(caudate nucleus,CN)的RLNonUni和GLevNonU以及红核(red nucleus,RN)的GLevNonU和ShrtRenp均与UPDRS-Ⅲ评分具有显著相关性,其余特征参数未发现显著临床评分相关性。结论·相较于灰质核团磁化率平均值,GLRLM纹理特征参数能够更好地从健康对照组中区分出PD。纹理多参数分析方法是QSM技术在多参数定量脑铁含量方面的一个新思路,可为PD的无创诊断提供更多维度的定量信息。

本文引用格式

赵欣欣 , 裴孟超 . 纹理多参数分析在帕金森病患者脑磁化率定量中的应用研究[J]. 上海交通大学学报(医学版), 2025 , 45(1) : 69 -78 . DOI: 10.3969/j.issn.1674-8115.2025.01.008

Abstract

Objective ·To quantify brain iron content in Parkinson′s disease (PD) patients by using quantitative susceptibility mapping (QSM) based on phase linearity fitting. Combined with texture analysis methods, the magnetic susceptibility distribution characteristics of gray matter nuclei in PD patients were quantitatively analyzed with multiple parameters and dimensions, and the sensitivity of texture features was evaluated with clinical scoring. Methods ·Quantitative susceptibility images from 20 PD patients and 20 healthy controls (HC) were analyzed retrospectively. Regions of interest in basal ganglia were manually segmented, followed by three-dimensional texture analysis by using gray-level run-length matrix (GLRLM). One-way analysis of variance (ANOVA) was performed to compare differences between the two groups, and the bilateral Pearson linear correlation coefficient ( r) was calculated to evaluate the correlation between texture parameters and UPDRS-III clinical scores. Results ·The analysis of texture feature parameters showed that there were significant differences between the PD and HC groups in the gray matter nuclei. Among all the texture feature parameters of GLRLM, LngREnch showed significant differences between the PD group and the HC group in the five gray matter nuclei measured. The average magnetic susceptibility of gray matter nuclei and GLRLM texture parameters were sensitive in distinguishing PD from HC (AUC>0.5). The AUC values of RLNonUni, LngREnch, ShrtREmp, and Fraction were higher than that of the average magnetization susceptibiliyt. The correlation analysis showed that RLNonUni and GLevNonU in the caudate nucleus (CN), as well as GLevNonU in the red nucleus (RN), were significantly correlated with UPDRS-III scores, while no significant clinical correlations were found for the remaining parameters. Conclusion ·Compared to the mean magnetic susceptibility values, GLRLM texture parameters provide better differentiation between the PD and HC groups. Multiparameter texture analysis offers a novel approach to QSM-based quantitative assessment of brain iron content, which can provide additional multidimensional quantitative information for the non-invasive diagnosis of PD.

参考文献

1 DICKSON D W. Parkinson′s disease and Parkinsonism: neuropathology[J]. Cold Spring Harb Perspect Med, 2012, 2(8): a009258.
2 IRIZARRY M C, GROWDON W, GOMEZ-ISLA T, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson′s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity[J]. J Neuropathol Exp Neurol, 1998, 57(4): 334-337.
3 SPILLANTINI M G, SCHMIDT M L, LEE V M, et al. Alpha-synuclein in lewy bodies[J]. Nature, 1997, 388(6645): 839-840.
4 ZECCA L, STROPPOLO A, GATTI A, et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging[J]. Proc Natl Acad Sci U S A, 2004, 101(26): 9843-9848.
5 PéRAN P, CHERUBINI A, ASSOGNA F, et al. Magnetic resonance imaging markers of Parkinson′s disease nigrostriatal signature[J]. Brain, 2010, 133(11): 3423-3433.
6 SIAN-HüLSMANN J, MANDEL S, YOUDIM M B, et al. The relevance of iron in the pathogenesis of Parkinson's disease[J]. J Neurochem, 2011, 118(6): 939-957.
7 LEE D W, ANDERSEN J K, KAUR D. Iron dysregulation and neurodegeneration: the molecular connection[J]. Mol Interv, 2006, 6(2): 89-97.
8 LI W, WU B, LIU C L. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J]. Neuroimage, 2011, 55(4): 1645-1656.
9 OSHIRO S, MORIOKA M S, KIKUCHI M. Dysregulation of iron metabolism in Alzheimer′s disease, Parkinson′s disease, and amyotrophic lateral sclerosis[J]. Adv Pharmacol Sci, 2011, 2011: 378278.
10 LV Z Y, JIANG H, XU H M, et al. Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson′s disease[J]. J Neural Transm, 2011, 118(3): 361-369.
11 FASANO M, BERGAMASCO B, LOPIANO L. Modifications of the iron-neuromelanin system in Parkinson′s disease[J]. J Neurochem, 2006, 96(4): 909-916.
12 WANG Y, LIU T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker[J]. Magn Reson Med, 2015, 73(1): 82-101.
13 HAACKE E M, LIU S F, BUCH S, et al. Quantitative susceptibility mapping: current status and future directions[J]. Magn Reson Imaging, 2015, 33(1): 1-25.
14 LIU C L, LI W, TONG K A, et al. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain[J]. J Magn Reson Imaging, 2015, 42(1): 23-41.
15 DU G W, LIU T, LEWIS M M, et al. Quantitative susceptibility mapping of the midbrain in Parkinson′s disease[J]. Mov Disord, 2016, 31(3): 317-324.
16 MURAKAMI Y, KAKEDA S, WATANABE K, et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease[J]. AJNR Am J Neuroradiol, 2015, 36(6): 1102-1108.
17 LANGKAMMER C, SCHWESER F, KREBS N, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study[J]. Neuroimage, 2012, 62(3): 1593-1599.
18 ZHANG J, YU C S, JIANG G L, et al. 3D texture analysis on MRI images of Alzheimer′s disease[J]. Brain Imaging Behav, 2012, 6(1): 61-69.
19 HWANG E J, KIM H G, KIM D, et al. Texture analyses of quantitative susceptibility maps to differentiate Alzheimer′s disease from cognitive normal and mild cognitive impairment[J]. Med Phys, 2016, 43(8): 4718.
20 CHENG Z H, ZHANG J P, HE N Y, et al. Radiomic features of the nigrosome-1 region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson′s disease[J]. Front Aging Neurosci, 2019, 11: 167.
21 LI G Y, ZHAI G Q, ZHAO X X, et al. 3D texture analyses within the substantia nigra of Parkinson′s disease patients on quantitative susceptibility maps and R2 maps[J]. Neuroimage, 2019, 188: 465-472.
22 MACKAY J W, KAPOOR G, DRIBAN J B, et al. Association of subchondral bone texture on magnetic resonance imaging with radiographic knee osteoarthritis progression: data from the osteoarthritis initiative bone ancillary study[J]. Eur Radiol, 2018, 28(11): 4687-4695.
23 TRAVERSO A, WEE L, DEKKER A, et al. Repeatability and reproducibility of radiomic features: a systematic review[J]. Int J Radiat Oncol Biol Phys, 2018, 102(4): 1143-1158.
24 YAN S, LU J, LI Y H, et al. Spatiotemporal patterns of brain iron-oxygen metabolism in patients with Parkinson′s disease[J]. Eur Radiol, 2024, 34(5): 3074-3083.
25 GUAN X J, LANCIONE M, AYTON S, et al. Neuroimaging of Parkinson′s disease by quantitative susceptibility mapping[J]. Neuroimage, 2024, 289: 120547.
26 WANG Y, SPINCEMAILLE P, LIU Z, et al. Clinical quantitative susceptibility mapping (QSM): biometal imaging and its emerging roles in patient care[J]. J Magn Reson Imaging, 2017, 46(4): 951-971.
27 ESKREIS-WINKLER S, ZHANG Y, ZHANG J W, et al. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning[J]. NMR Biomed, 2017, 30(4): e3668.
28 MAZZUCCHI S, FROSINI D, COSTAGLI M, et al. Quantitative susceptibility mapping in atypical Parkinsonisms[J]. Neuroimage Clin, 2019, 24: 101999.
29 LI K R, AVECILLAS-CHASIN J, NGUYEN T D, et al. Quantitative evaluation of brain iron accumulation in different stages of Parkinson′s disease[J]. J Neuroimaging, 2022, 32(2): 363-371.
文章导航

/