收稿日期: 2024-05-07
录用日期: 2024-12-10
网络出版日期: 2025-02-24
基金资助
上海市第六人民医院基础研究项目(ynms202207);上海市卫生健康委员会科研面上项目(202340080)
Causal relationship between type 2 diabetes mellitus and cognitive impairment based on Mendelian randomization
Received date: 2024-05-07
Accepted date: 2024-12-10
Online published: 2025-02-24
Supported by
Basic Research Project of Shanghai Sixth People's Hospital(ynms202207);Scientific Research Project of Shanghai Municipal Health Commission(202340080)
目的·采用两样本孟德尔随机化法(Mendelian randomization,MR)探究2型糖尿病(type 2 diabetes mellitus,T2DM)和认知功能障碍之间的因果关系。方法·从大规模全基因组关联研究(genome-wide association study,GWAS)汇总数据集中汇总与T2DM相关的工具变量,采用逆方差加权作为主要分析技术,以MR-Egger回归、加权中位数法和简单中位数法为辅,并联合应用meta分析对不同结局进行合并,分析T2DM与痴呆症、阿尔茨海默病(Alzheimer's disease,AD)和帕金森痴呆之间因果关系的可能性。采用MR-PRESSO整体测试和MR-Egger分析检查水平多效性。结果·遗传预测的T2DM与痴呆症(OR=1.11,95%CI 1.02~1.20,P=1.96×10-2)和AD(OR=1.16,95%CI 1.04~1.30,P=8.41×10-3)之间存在因果关系。meta分析支持T2DM与认知障碍的关联(OR=1.12,95%CI 1.05~1.20,P=4.22×10-4)。一系列敏感性分析提示不存在异质性和水平多效性。反向MR分析结果显示各种类型痴呆对T2DM没有明显的反向因果关系。结论·T2DM与多种痴呆症的患病风险呈正相关,提示T2DM可能是认知障碍的一个重要风险因素。
林祎嘉 , 程丽珍 , 胡廷军 , 苗雅 . 基于孟德尔随机化法的2型糖尿病与认知障碍因果关系研究[J]. 上海交通大学学报(医学版), 2025 , 45(2) : 204 -210 . DOI: 10.3969/j.issn.1674-8115.2025.02.009
Objective ·To investigate the causal relationship between type 2 diabetes mellitus (T2DM) and cognitive dysfunction using two-sample Mendelian randomisation (MR). Methods ·Instrumental variables associated with T2DM were pooled from a large-scale genome-wide association study (GWAS) dataset. Inverse variance weighting was used as the primary analytical technique, supplemented by MR-Egger regression, weighted median and simple median analyses. Meta-analysis was jointly applied to combine different endpoints and to analyse the possibility of a causal relationship between T2DM and dementia, Alzheimer's disease, and Parkinson's dementia. Horizontal pleiotropy was examined by MR-PRESSO global test and MR-Egger analysis. Results ·There was a causal relationship between genetically predicted T2DM and dementia (OR=1.11, 95%CI 1.02~1.20, P=1.96×10-2) and AD (OR=1.16, 95%CI 1.04~1.30, P=8.41×10-3). Meta-analysis also supported the association between T2DM and cognitive impairment (OR=1.12, 95%CI 1.05~1.20, P=4.22×10-4). A series of sensitivity analyses suggested the absence of heterogeneity and horizontal pleiotropy. Reverse MR analysis showed no significant causal relationship of various types of dementia on T2DM. Conclusion ·T2DM is positively associated with the risk of developing various types of dementia, suggesting that T2DM may be an important risk factor for cognitive impairment.
1 | DAMANIK J, YUNIR E. Type 2 diabetes mellitus and cognitive impairment[J]. Acta Med Indones, 2021, 53(2): 213-220. |
2 | BURILLO J, MARQUéS P, JIMéNEZ B, et al. Insulin resistance and diabetes mellitus in Alzheimer's disease[J]. Cells, 2021, 10(5): 1236. |
3 | GUDALA K, BANSAL D, SCHIFANO F, et al. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies[J]. J Diabetes Investig, 2013, 4(6): 640-650. |
4 | THOMASSEN J Q, TOLSTRUP J S, BENN M, et al. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals[J]. Epidemiol Psychiatr Sci, 2020, 29: e118. |
5 | BENN M, NORDESTGAARD B G, TYBJ?RG-HANSEN A, et al. Impact of glucose on risk of dementia: Mendelian randomisation studies in 115, 875 individuals[J]. Diabetologia, 2020, 63(6): 1151-1161. |
6 | CHOHAN H, SENKEVICH K, PATEL R K, et al. Type 2 diabetes as a determinant of Parkinson's disease risk and progression[J]. Mov Disord, 2021, 36(6): 1420-1429. |
7 | Emdin C A, Khera A V, Kathiresan S. Mendelian randomization[J]. Jama, 2017, 318(19): 1925-1926. |
8 | LAWLOR D A, HARBORD R M, STERNE J A, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology[J]. Stat Med, 2008, 27(8): 1133-1163. |
9 | BURGESS S, BUTTERWORTH A, THOMPSON S G. Mendelian randomization analysis with multiple genetic variants using summarized data[J]. Genet Epidemiol, 2013, 37(7): 658-665. |
10 | DAVEY SMITH G, HEMANI G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies[J]. Hum Mol Genet, 2014, 23(r1): R89-R98. |
11 | BURGESS S, SCOTT R A, TIMPSON N J, et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors[J]. Eur J Epidemiol, 2015, 30(7): 543-552. |
12 | MAHAJAN A, WESSEL J, WILLEMS S M, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes[J]. Nat Genet, 2018, 50: 559-571. |
13 | KAMAT M A, BLACKSHAW J A, YOUNG R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. |
14 | L?VDéN M, FRATIGLIONI L, GLYMOUR M M, et al. Education and cognitive functioning across the life span[J]. Psychol Sci Public Interest, 2020, 21(1): 6-41. |
15 | RAMOS-LOYO J, GONZáLEZ-GARRIDO A A, LLAMAS-ALONSO L A, et al. Sex differences in cognitive processing: an integrative review of electrophysiological findings[J]. Biol Psychol, 2022, 172: 108370. |
16 | SHIM H, CHASMAN D I, SMITH J D, et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians[J]. PLoS One, 2015, 10(4): e0120758. |
17 | BURGESS S, THOMPSON S G. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. |
18 | BOWDEN J, DAVEY SMITH G, HAYCOCK P C, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted Median estimator[J]. Genet Epidemiol, 2016, 40(4): 304-314. |
19 | YUAN H, YANG W. Genetically determined serum uric acid and Alzheimer's disease risk[J]. J Alzheimers Dis, 2018, 65(4): 1259-1265. |
20 | VERBANCK M, CHEN C Y, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50: 693-698. |
21 | GRECO M F D, MINELLI C, SHEEHAN N A, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome[J]. Stat Med, 2015, 34(21): 2926-2940. |
22 | BOWDEN J, DEL GRECO M F, MINELLI C, et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization[J]. Stat Med, 2017, 36(11): 1783-1802. |
23 | HEMANI G, TILLING K, DAVEY SMITH G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data[J]. PLoS Genet, 2017, 13(11): e1007081. |
24 | BRION M J, SHAKHBAZOV K, VISSCHER P M. Calculating statistical power in Mendelian randomization studies[J]. Int J Epidemiol, 2013, 42(5): 1497-1501. |
25 | HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408. |
26 | YAVORSKA O O, BURGESS S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data[J]. Int J Epidemiol, 2017, 46(6): 1734-1739. |
27 | XUE M, XU W, OU Y N, et al. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies[J]. Ageing Res Rev, 2019, 55: 100944. |
28 | LAI H T M, CHANG K, SHARABIANI M T A, et al. Twenty-year trajectories of cardio-metabolic factors among people with type 2 diabetes by dementia status in England: a retrospective cohort study[J]. Eur J Epidemiol, 2023, 38(7): 733-744. |
29 | DAO L, CHOI S, FREEBY M. Type 2 diabetes mellitus and cognitive function: understanding the connections[J]. Curr Opin Endocrinol Diabetes Obes, 2023, 30(1): 7-13. |
30 | LUO A, XIE Z, WANG Y, et al. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies[J]. Neurosci Biobehav Rev, 2022, 137: 104642. |
31 | ABI SALEH R, LIRETTE S T, BENJAMIN E J, et al. Mediation effects of diabetes and inflammation on the relationship of obesity to cognitive impairment in African Americans[J]. J Am Geriatr Soc, 2022, 70(10): 3021-3029. |
32 | XU W L, QIU C X, WAHLIN A, et al. Diabetes mellitus and risk of dementia in the Kungsholmen Project: a 6-year follow-up study[J]. Neurology, 2004, 63(7): 1181-1186. |
33 | GOEDERT M. NEURODEGENERATION. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein[J]. Science, 2015, 349(6248): 1255555. |
/
〈 |
|
〉 |