收稿日期: 2024-09-27
录用日期: 2024-11-25
网络出版日期: 2025-02-24
基金资助
国家自然科学基金(82230106)
Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance
Received date: 2024-09-27
Accepted date: 2024-11-25
Online published: 2025-02-24
Supported by
National Natural Science Foundation of China(82230106)
皮肤黑色素瘤(cutaneous melanoma,CM)是一种由黑色素细胞恶性增殖引起的高度恶性肿瘤,易发生远处转移,具有高致死率。尽管靶向治疗和免疫治疗的发展显著提高了晚期CM患者的生存率,但肿瘤耐药性限制了治疗效果的进一步提高。近年来,自噬作为一种关键的调节性细胞死亡方式,在CM的致病机制中的作用研究取得了重要进展。自噬是利用溶酶体降解和再循环各种细胞组分维持细胞内环境稳态的主要机制。大量研究证实,自噬在CM中的作用复杂且具有争议性。在肿瘤发展早期阶段,自噬可能通过清除损伤的细胞组分,抑制肿瘤细胞异常增殖。但随着肿瘤的进展,自噬可能发挥促进肿瘤侵袭和转移的作用。在晚期CM中,自噬的激活有助于肿瘤细胞在压力环境下存活。尤其是在鼠类肉瘤病毒癌基因同源物B1(V-Raf murine sarcoma viral oncogene homolog B1,BRAF)突变的CM中,自噬活动常常增强,削弱BRAF抑制剂靶向治疗的效果。该文深入分析自噬在CM进展中的双重效应,并探讨自噬在CM耐药中的作用,以期为开发靶向治疗CM新策略提供参考。
罗文 , 吕明君 , 张珍 , 张雪 , 姚志荣 . 自噬在皮肤黑色素瘤中的双重效应及耐药中的作用研究进展[J]. 上海交通大学学报(医学版), 2025 , 45(2) : 233 -240 . DOI: 10.3969/j.issn.1674-8115.2025.02.013
Cutaneous melanoma (CM) is a highly malignant tumor caused by malignant proliferation of melanocytes, characterized by distant metastasis and high mortality. Although targeted therapy and immunotherapy have significantly improved the survival rates of advanced CM patients, tumor resistance remains a key barrier to further improving treatment outcomes. In recent years, significant progress has been made in the study of autophagy as a key regulatory cell death mode in the pathogenesis of CM. Autophagy is the main mechanism that mediates the degradation and recycling of various cellular components through lysosomes to maintain the homeostasis of the intracellular environment. A large number of studies have confirmed that the role of autophagy in CM is complex and controversial. In the early stages of CM development, autophagy may inhibit abnormal proliferation of tumor cells by removing damaged cell components. However, as the tumor progresses, autophagy may transform into a role that promotes tumor invasion and metastasis. In advanced CM, the activation of autophagy helps tumor cells survive in stressful environments. In particular, in CM with BRAF (V-Raf murine sarcoma viral oncogene homolog B1) mutations, autophagy activity is often enhanced, weakening the effectiveness of BRAF inhibitor-targeted therapy. This article provides an in-depth analysis of the dual effects of autophagy on the progression of CM and explores the role of autophagy in CM resistance, in order to provide insights for the development of new targeted therapy strategies for CM.
1 | BAI X, FLAHERTY K T. Targeted and immunotherapies in BRAF mutant melanoma: where we stand and what to expect[J]. Br J Dermatol, 2021, 185(2): 253-262. |
2 | BAHAR M E, KIM H J, KIM D R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455. |
3 | SHEN Q S, HAN Y F, WU K, et al. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2022, 7(1): 147. |
4 | CARLINO M S, LARKIN J, LONG G V. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021, 398(10304): 1002-1014. |
5 | KLIONSKY D J, PETRONI G, AMARAVADI R K, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. |
6 | KUCHITSU Y, TAGUCHI T. Lysosomal microautophagy: an emerging dimension in mammalian autophagy[J]. Trends Cell Biol, 2024, 34(7): 606-616. |
7 | FERREIRA J V, DA ROSA SOARES A, RAMALHO J, et al. LAMP2A regulates the loading of proteins into exosomes[J]. Sci Adv, 2022, 8(12): eabm1140. |
8 | JOSHI J N, LERNER A D, SCALLO F, et al. mTORC1 activity oscillates throughout the cell cycle, promoting mitotic entry and differentially influencing autophagy induction[J]. Cell Rep, 2024, 43(8): 114543. |
9 | WU N, ZHENG W H, ZHOU Y D, et al. Autophagy in aging-related diseases and cancer: principles, regulatory mechanisms and therapeutic potential[J]. Ageing Res Rev, 2024, 100: 102428. |
10 | DEBNATH J, GAMMOH N, RYAN K M. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-575. |
11 | NAKATOGAWA H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 439-458. |
12 | SHU F, XIAO H, LI Q N, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 32. |
13 | YEH I, BASTIAN B C. Melanoma pathology: new approaches and classification[J]. Br J Dermatol, 2021, 185(2): 282-293. |
14 | RAHMATI M, EBRAHIM S, HASHEMI S, et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma[J]. Mol Biol Rep, 2020, 47(11): 9021-9032. |
15 | DELYON J, BECHERIRAT S, ROGER A, et al. PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors[J]. Cell Commun Signal, 2024, 22(1): 559. |
16 | INCE F A, SHARIEV A, DIXON K. PTEN as a target in melanoma[J]. J Clin Pathol, 2022: jclinpath-jclin2021-208008. |
17 | NOONAN H R, THORNOCK A M, BARBANO J, et al. A chronic signaling TGFb zebrafish reporter identifies immune response in melanoma[J]. eLife, 2024, 13: e83527. |
18 | LOFTUS A W, ZAREI M, KAKISH H, et al. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma[J]. Cancer Treat Rev, 2024, 129: 102795. |
19 | PANGILINAN C, XU X W, HERLYN M, et al. Autophagy paradox: strategizing treatment modality in melanoma[J]. Curr Treat Options Oncol, 2023, 24(2): 130-145. |
20 | RATHER R A, BHAGAT M, SINGH S K. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: crosstalk and therapeutic targets in cutaneous melanoma[J]. Mutat Res Rev Mutat Res, 2020, 785: 108321. |
21 | LIU H, HE Z Y, VON RüTTE T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma[J]. Sci Transl Med, 2013, 5(202): 202ra123. |
22 | ROSENFELDT M T, O'PREY J, LINDSAY C R, et al. Loss of autophagy affects melanoma development in a manner dependent on PTEN status[J]. Cell Death Differ, 2021, 28(4): 1437-1439. |
23 | PATEL N H, BLOUKH S, ALWOHOSH E, et al. Autophagy and senescence in cancer therapy[J]. Adv Cancer Res, 2021, 150: 1-74. |
24 | LI Z, JIANG K, ZHU X F, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells[J]. Cancer Lett, 2016, 370(2): 332-344. |
25 | LIU X J, YIN M X, DONG J W, et al. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR[J]. Acta Pharm Sin B, 2021, 11(10): 3134-3149. |
26 | GUO W N, WANG H N, LI C Y. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 424. |
27 | EMBABY A, HUIJBERTS S C F A, WANG L Q, et al. A proof-of-concept study of sequential treatment with the HDAC inhibitor vorinostat following BRAF and MEK inhibitors in BRAFV600-mutated melanoma[J]. Clin Cancer Res, 2024, 30(15): 3157-3166. |
28 | XUE G D, KOHLER R, TANG F Y, et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition[J]. Oncotarget, 2017, 8(41): 69204-69218. |
29 | GOVINDARAJAN B, SLIGH J E, VINCENT B J, et al. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma[J]. J Clin Invest, 2007, 117(3): 719-729. |
30 | DU B X, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells[J]. Chin J Nat Med, 2022, 20(4): 290-300. |
31 | SANDUJA S, FENG Y, MATHIS R A, et al. AMPK promotes tolerance to Ras pathway inhibition by activating autophagy[J]. Oncogene, 2016, 35(40): 5295-5303. |
32 | LI Y Y, WU C J, SHAH S S, et al. Degradation of AMPK-α1 sensitizes BRAF inhibitor-resistant melanoma cells to arginine deprivation[J]. Mol Oncol, 2017, 11(12): 1806-1825. |
33 | SUN T, JIAO L, WANG Y X, et al. SIRT1 induces epithelial-mesenchymal transition by promoting autophagic degradation of E-cadherin in melanoma cells[J]. Cell Death Dis, 2018, 9(2): 136. |
34 | WANG L W, GUO W N, MA J Y, et al. Aberrant SIRT6 expression contributes to melanoma growth: role of the autophagy paradox and IGF-AKT signaling[J]. Autophagy, 2018, 14(3): 518-533. |
35 | KWIATKOWSKA D, MAZUR E, REICH A. YY1 is a key player in melanoma immunotherapy/targeted treatment resistance[J]. Front Oncol, 2022, 12: 856963. |
36 | PAPACCIO F, KOVACS D, BELLEI B, et al. Profiling cancer-associated fibroblasts in melanoma[J]. Int J Mol Sci, 2021, 22(14): 7255. |
37 | MADEJ E, LISEK A, BRO?YNA A A, et al. The involvement of RIPK4 in TNF-α-stimulated IL-6 and IL-8 production by melanoma cells[J]. J Cancer Res Clin Oncol, 2024, 150(4): 209. |
38 | KEWITZ-HEMPEL S, WINDISCH N, HAUSE G, et al. Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN[J]. J Extracell Vesicles, 2024, 13(9): e12509. |
39 | XU J, YANG K C, GO N E, et al. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations[J]. Autophagy, 2022, 18(11): 2547-2560. |
40 | BERNARD M, YANG B, MIGNEAULT F, et al. Autophagy drives fibroblast senescence through MTORC2 regulation[J]. Autophagy, 2020, 16(11): 2004-2016. |
41 | ZHANG C T, SUN Y Z, LI S C, et al. Autophagic flux restoration enhances the antitumor efficacy of tumor infiltrating lymphocytes[J]. J Immunother Cancer, 2022, 10(10): e004868. |
42 | GARTRELL-CORRADO R D, CHEN A X, RIZK E M, et al. Linking transcriptomic and imaging data defines features of a favorable tumor immune microenvironment and identifies a combination biomarker for primary melanoma[J]. Cancer Res, 2020, 80(5): 1078-1087. |
43 | LEQUEUX A, NOMAN M Z, XIAO M, et al. Targeting HIF-1 α transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy[J]. Oncogene, 2021, 40(28): 4725-4735. |
44 | YAMAMOTO K, VENIDA A, YANO J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. |
45 | POILLET-PEREZ L, SHARP D W, YANG Y, et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response[J]. Nat Cancer, 2020, 1(9): 923-934. |
46 | TOLCHER A W, HONG D S, VANDROSS A L, et al. A phase 1/2 study of DCC-3116 as a single agent and in combination with trametinib in patients with advanced or metastatic solid tumors with RAS or RAF mutations[J]. J Clin Oncol, 2022, 40(16_suppl): TPS3178. |
47 | BAO Y, DING Z, ZHAO P, et al. Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells[J]. Cell Death Dis, 2020, 11(4): 223. |
48 | NOMAN M Z, PARPAL S, VAN MOER K, et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy[J]. Sci Adv, 2020, 6(18): eaax7881. |
49 | LIU Y J, HAO Y H, LI Y X, et al. Salinomycin induces autophagic cell death in salinomycin-sensitive melanoma cells through inhibition of autophagic flux[J]. Sci Rep, 2020, 10(1): 18515. |
50 | XIA Y, XU F Y, XIONG M P, et al. Repurposing of antipsychotic trifluoperazine for treating brain metastasis, lung metastasis and bone metastasis of melanoma by disrupting autophagy flux[J]. Pharmacol Res, 2021, 163: 105295. |
51 | RANGWALA R, LEONE R, CHANG Y C, et al. Phase Ⅰ trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1369-1379. |
52 | MEHNERT J M, MITCHELL T C, HUANG A C, et al. BAMM (BRAF autophagy and MEK inhibition in melanoma): a phase Ⅰ/Ⅱ trial of dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma[J]. Clin Cancer Res, 2022, 28(6): 1098-1106. |
53 | AMARAVADI R K. Clinical trial results show promise of targeting autophagy BRAF mutant melanoma[J]. Autophagy, 2022, 18(6): 1470-1471. |
54 | AWADA G, SCHWARZE J K, TIJTGAT J, et al. A lead-in safety study followed by a phase 2 clinical trial of dabrafenib, trametinib and hydroxychloroquine in advanced BRAFV600 mutant melanoma patients previously treated with BRAF-/ MEK-inhibitors and immune checkpoint inhibitors[J]. Melanoma Res, 2022, 32(3): 183-191. |
55 | RANGWALA R, CHANG Y C, HU J, et al. Combined MTOR and autophagy inhibition: phase Ⅰ trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1391-1402. |
/
〈 |
|
〉 |