上海交通大学学报(医学版) ›› 2025, Vol. 45 ›› Issue (2): 233-240.doi: 10.3969/j.issn.1674-8115.2025.02.013
• 综述 • 上一篇
收稿日期:
2024-09-27
接受日期:
2024-11-25
出版日期:
2025-02-24
发布日期:
2025-02-24
通讯作者:
姚志荣
E-mail:luowen1006@sjtu.edu.cn;yaozhirong@xinhuamed.com.cn
作者简介:
罗 文(1997—),女,硕士生;电子信箱:luowen1006@sjtu.edu.cn。
基金资助:
LUO Wen(), LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong(
)
Received:
2024-09-27
Accepted:
2024-11-25
Online:
2025-02-24
Published:
2025-02-24
Contact:
YAO Zhirong
E-mail:luowen1006@sjtu.edu.cn;yaozhirong@xinhuamed.com.cn
Supported by:
摘要:
皮肤黑色素瘤(cutaneous melanoma,CM)是一种由黑色素细胞恶性增殖引起的高度恶性肿瘤,易发生远处转移,具有高致死率。尽管靶向治疗和免疫治疗的发展显著提高了晚期CM患者的生存率,但肿瘤耐药性限制了治疗效果的进一步提高。近年来,自噬作为一种关键的调节性细胞死亡方式,在CM的致病机制中的作用研究取得了重要进展。自噬是利用溶酶体降解和再循环各种细胞组分维持细胞内环境稳态的主要机制。大量研究证实,自噬在CM中的作用复杂且具有争议性。在肿瘤发展早期阶段,自噬可能通过清除损伤的细胞组分,抑制肿瘤细胞异常增殖。但随着肿瘤的进展,自噬可能发挥促进肿瘤侵袭和转移的作用。在晚期CM中,自噬的激活有助于肿瘤细胞在压力环境下存活。尤其是在鼠类肉瘤病毒癌基因同源物B1(V-Raf murine sarcoma viral oncogene homolog B1,BRAF)突变的CM中,自噬活动常常增强,削弱BRAF抑制剂靶向治疗的效果。该文深入分析自噬在CM进展中的双重效应,并探讨自噬在CM耐药中的作用,以期为开发靶向治疗CM新策略提供参考。
中图分类号:
罗文, 吕明君, 张珍, 张雪, 姚志荣. 自噬在皮肤黑色素瘤中的双重效应及耐药中的作用研究进展[J]. 上海交通大学学报(医学版), 2025, 45(2): 233-240.
LUO Wen, LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong. Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 233-240.
Agent | Autophagy-related mechanism | Phase | Outcome | Refrence |
---|---|---|---|---|
HCQ+TMZ | Inhibit fusion of autophagosome and lysosome | Ⅰ | 14% PR, 27% SD | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅰ/Ⅱ | 85% OR, 41% CR PFS: 11.2 months, OS: 26.5 months | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅱ | 20% OR | [ |
HCQ+ TEM | mTOR inhibitor | Ⅰ | PFS: 3.5 months | [ |
表1 靶向自噬治疗CM的临床研究
Tab 1 Clinical study of targeted autophagy therapy for CM
Agent | Autophagy-related mechanism | Phase | Outcome | Refrence |
---|---|---|---|---|
HCQ+TMZ | Inhibit fusion of autophagosome and lysosome | Ⅰ | 14% PR, 27% SD | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅰ/Ⅱ | 85% OR, 41% CR PFS: 11.2 months, OS: 26.5 months | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅱ | 20% OR | [ |
HCQ+ TEM | mTOR inhibitor | Ⅰ | PFS: 3.5 months | [ |
1 | BAI X, FLAHERTY K T. Targeted and immunotherapies in BRAF mutant melanoma: where we stand and what to expect[J]. Br J Dermatol, 2021, 185(2): 253-262. |
2 | BAHAR M E, KIM H J, KIM D R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455. |
3 | SHEN Q S, HAN Y F, WU K, et al. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2022, 7(1): 147. |
4 | CARLINO M S, LARKIN J, LONG G V. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021, 398(10304): 1002-1014. |
5 | KLIONSKY D J, PETRONI G, AMARAVADI R K, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. |
6 | KUCHITSU Y, TAGUCHI T. Lysosomal microautophagy: an emerging dimension in mammalian autophagy[J]. Trends Cell Biol, 2024, 34(7): 606-616. |
7 | FERREIRA J V, DA ROSA SOARES A, RAMALHO J, et al. LAMP2A regulates the loading of proteins into exosomes[J]. Sci Adv, 2022, 8(12): eabm1140. |
8 | JOSHI J N, LERNER A D, SCALLO F, et al. mTORC1 activity oscillates throughout the cell cycle, promoting mitotic entry and differentially influencing autophagy induction[J]. Cell Rep, 2024, 43(8): 114543. |
9 | WU N, ZHENG W H, ZHOU Y D, et al. Autophagy in aging-related diseases and cancer: principles, regulatory mechanisms and therapeutic potential[J]. Ageing Res Rev, 2024, 100: 102428. |
10 | DEBNATH J, GAMMOH N, RYAN K M. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-575. |
11 | NAKATOGAWA H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 439-458. |
12 | SHU F, XIAO H, LI Q N, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 32. |
13 | YEH I, BASTIAN B C. Melanoma pathology: new approaches and classification[J]. Br J Dermatol, 2021, 185(2): 282-293. |
14 | RAHMATI M, EBRAHIM S, HASHEMI S, et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma[J]. Mol Biol Rep, 2020, 47(11): 9021-9032. |
15 | DELYON J, BECHERIRAT S, ROGER A, et al. PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors[J]. Cell Commun Signal, 2024, 22(1): 559. |
16 | INCE F A, SHARIEV A, DIXON K. PTEN as a target in melanoma[J]. J Clin Pathol, 2022: jclinpath-jclin2021-208008. |
17 | NOONAN H R, THORNOCK A M, BARBANO J, et al. A chronic signaling TGFb zebrafish reporter identifies immune response in melanoma[J]. eLife, 2024, 13: e83527. |
18 | LOFTUS A W, ZAREI M, KAKISH H, et al. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma[J]. Cancer Treat Rev, 2024, 129: 102795. |
19 | PANGILINAN C, XU X W, HERLYN M, et al. Autophagy paradox: strategizing treatment modality in melanoma[J]. Curr Treat Options Oncol, 2023, 24(2): 130-145. |
20 | RATHER R A, BHAGAT M, SINGH S K. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: crosstalk and therapeutic targets in cutaneous melanoma[J]. Mutat Res Rev Mutat Res, 2020, 785: 108321. |
21 | LIU H, HE Z Y, VON RÜTTE T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma[J]. Sci Transl Med, 2013, 5(202): 202ra123. |
22 | ROSENFELDT M T, O'PREY J, LINDSAY C R, et al. Loss of autophagy affects melanoma development in a manner dependent on PTEN status[J]. Cell Death Differ, 2021, 28(4): 1437-1439. |
23 | PATEL N H, BLOUKH S, ALWOHOSH E, et al. Autophagy and senescence in cancer therapy[J]. Adv Cancer Res, 2021, 150: 1-74. |
24 | LI Z, JIANG K, ZHU X F, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells[J]. Cancer Lett, 2016, 370(2): 332-344. |
25 | LIU X J, YIN M X, DONG J W, et al. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR[J]. Acta Pharm Sin B, 2021, 11(10): 3134-3149. |
26 | GUO W N, WANG H N, LI C Y. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 424. |
27 | EMBABY A, HUIJBERTS S C F A, WANG L Q, et al. A proof-of-concept study of sequential treatment with the HDAC inhibitor vorinostat following BRAF and MEK inhibitors in BRAFV600-mutated melanoma[J]. Clin Cancer Res, 2024, 30(15): 3157-3166. |
28 | XUE G D, KOHLER R, TANG F Y, et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition[J]. Oncotarget, 2017, 8(41): 69204-69218. |
29 | GOVINDARAJAN B, SLIGH J E, VINCENT B J, et al. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma[J]. J Clin Invest, 2007, 117(3): 719-729. |
30 | DU B X, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells[J]. Chin J Nat Med, 2022, 20(4): 290-300. |
31 | SANDUJA S, FENG Y, MATHIS R A, et al. AMPK promotes tolerance to Ras pathway inhibition by activating autophagy[J]. Oncogene, 2016, 35(40): 5295-5303. |
32 | LI Y Y, WU C J, SHAH S S, et al. Degradation of AMPK-α1 sensitizes BRAF inhibitor-resistant melanoma cells to arginine deprivation[J]. Mol Oncol, 2017, 11(12): 1806-1825. |
33 | SUN T, JIAO L, WANG Y X, et al. SIRT1 induces epithelial-mesenchymal transition by promoting autophagic degradation of E-cadherin in melanoma cells[J]. Cell Death Dis, 2018, 9(2): 136. |
34 | WANG L W, GUO W N, MA J Y, et al. Aberrant SIRT6 expression contributes to melanoma growth: role of the autophagy paradox and IGF-AKT signaling[J]. Autophagy, 2018, 14(3): 518-533. |
35 | KWIATKOWSKA D, MAZUR E, REICH A. YY1 is a key player in melanoma immunotherapy/targeted treatment resistance[J]. Front Oncol, 2022, 12: 856963. |
36 | PAPACCIO F, KOVACS D, BELLEI B, et al. Profiling cancer-associated fibroblasts in melanoma[J]. Int J Mol Sci, 2021, 22(14): 7255. |
37 | MADEJ E, LISEK A, BROŻYNA A A, et al. The involvement of RIPK4 in TNF-α-stimulated IL-6 and IL-8 production by melanoma cells[J]. J Cancer Res Clin Oncol, 2024, 150(4): 209. |
38 | KEWITZ-HEMPEL S, WINDISCH N, HAUSE G, et al. Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN[J]. J Extracell Vesicles, 2024, 13(9): e12509. |
39 | XU J, YANG K C, GO N E, et al. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations[J]. Autophagy, 2022, 18(11): 2547-2560. |
40 | BERNARD M, YANG B, MIGNEAULT F, et al. Autophagy drives fibroblast senescence through MTORC2 regulation[J]. Autophagy, 2020, 16(11): 2004-2016. |
41 | ZHANG C T, SUN Y Z, LI S C, et al. Autophagic flux restoration enhances the antitumor efficacy of tumor infiltrating lymphocytes[J]. J Immunother Cancer, 2022, 10(10): e004868. |
42 | GARTRELL-CORRADO R D, CHEN A X, RIZK E M, et al. Linking transcriptomic and imaging data defines features of a favorable tumor immune microenvironment and identifies a combination biomarker for primary melanoma[J]. Cancer Res, 2020, 80(5): 1078-1087. |
43 | LEQUEUX A, NOMAN M Z, XIAO M, et al. Targeting HIF-1 α transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy[J]. Oncogene, 2021, 40(28): 4725-4735. |
44 | YAMAMOTO K, VENIDA A, YANO J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. |
45 | POILLET-PEREZ L, SHARP D W, YANG Y, et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response[J]. Nat Cancer, 2020, 1(9): 923-934. |
46 | TOLCHER A W, HONG D S, VANDROSS A L, et al. A phase 1/2 study of DCC-3116 as a single agent and in combination with trametinib in patients with advanced or metastatic solid tumors with RAS or RAF mutations[J]. J Clin Oncol, 2022, 40(16_suppl): TPS3178. |
47 | BAO Y, DING Z, ZHAO P, et al. Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells[J]. Cell Death Dis, 2020, 11(4): 223. |
48 | NOMAN M Z, PARPAL S, VAN MOER K, et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy[J]. Sci Adv, 2020, 6(18): eaax7881. |
49 | LIU Y J, HAO Y H, LI Y X, et al. Salinomycin induces autophagic cell death in salinomycin-sensitive melanoma cells through inhibition of autophagic flux[J]. Sci Rep, 2020, 10(1): 18515. |
50 | XIA Y, XU F Y, XIONG M P, et al. Repurposing of antipsychotic trifluoperazine for treating brain metastasis, lung metastasis and bone metastasis of melanoma by disrupting autophagy flux[J]. Pharmacol Res, 2021, 163: 105295. |
51 | RANGWALA R, LEONE R, CHANG Y C, et al. Phase Ⅰ trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1369-1379. |
52 | MEHNERT J M, MITCHELL T C, HUANG A C, et al. BAMM (BRAF autophagy and MEK inhibition in melanoma): a phase Ⅰ/Ⅱ trial of dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma[J]. Clin Cancer Res, 2022, 28(6): 1098-1106. |
53 | AMARAVADI R K. Clinical trial results show promise of targeting autophagy BRAF mutant melanoma[J]. Autophagy, 2022, 18(6): 1470-1471. |
54 | AWADA G, SCHWARZE J K, TIJTGAT J, et al. A lead-in safety study followed by a phase 2 clinical trial of dabrafenib, trametinib and hydroxychloroquine in advanced BRAFV600 mutant melanoma patients previously treated with BRAF-/ MEK-inhibitors and immune checkpoint inhibitors[J]. Melanoma Res, 2022, 32(3): 183-191. |
55 | RANGWALA R, CHANG Y C, HU J, et al. Combined MTOR and autophagy inhibition: phase Ⅰ trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1391-1402. |
[1] | 魏云鑫, 蒋绪顺, 蔡梦瑶, 温睿智, 杜晓刚. COMP与糖尿病肾病自噬相关性分析及其功能验证[J]. 上海交通大学学报(医学版), 2024, 44(7): 847-858. |
[2] | 张勇, 李伟宏, 程志鹏, 王斌, 王思珩, 王毓斌. 受体相互作用蛋白激酶1调节癌症进展和免疫反应的研究现状[J]. 上海交通大学学报(医学版), 2024, 44(6): 788-794. |
[3] | 徐文晖, 杨畅, 李瑞卿, 卞京, 李夏伊, 郑磊贞. 干扰素调节因子3促结直肠癌细胞增殖与侵袭相关探索[J]. 上海交通大学学报(医学版), 2024, 44(3): 301-311. |
[4] | 丁艳玲, 李杰, 袁军, 李燕. 慢性淋巴细胞白血病靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(2): 264-270. |
[5] | 唐思洁, 糜坚青. 抗体药物偶联物在血液肿瘤中的临床应用研究进展[J]. 上海交通大学学报(医学版), 2024, 44(12): 1607-1614. |
[6] | 方馨悦, 石岚, 夏思易, 王佳璇, 吴英理, 何珂骏. Menin-MLL蛋白相互作用及相关抑制剂在MLL基因重排白血病中应用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(10): 1287-1298. |
[7] | 周婉桢, 滕银成. 非经典Wnt通路在卵巢癌中的作用与潜在治疗意义研究进展[J]. 上海交通大学学报(医学版), 2023, 43(8): 1056-1063. |
[8] | 高楠, 郝璨, 马冰洁, 靳天, 马柯, 刘晓明. 转位分子蛋白经由Keap1/Nrf2/HO-1通路激活自噬缓解大鼠糖尿病神经病理性疼痛[J]. 上海交通大学学报(医学版), 2023, 43(8): 988-996. |
[9] | 吴淇琦, 汪豪, 林砺, 晏博, 张舒林. miR-185-5p通过抑制巨噬细胞自噬促进胞内分枝杆菌生长[J]. 上海交通大学学报(医学版), 2023, 43(6): 699-708. |
[10] | 金芳全, 樊成虎, 唐晓栋, 陈彦同, 齐兵献. 线粒体功能障碍与骨质疏松症相关性研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 761-767. |
[11] | 梅艳青, 韩雨洁, 翁文筠, 张蕾, 唐玉杰. 靶向抑制CDK12/13在高级别胶质瘤中的体外治疗效果和作用分子机制探究[J]. 上海交通大学学报(医学版), 2023, 43(5): 545-559. |
[12] | 徐瀛濂, 田静, 张翔, 赵顺英. 气道上皮细胞在哮喘发病机制中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 619-623. |
[13] | 魏兰懿, 薛晓川, 陈君君, 杨全军, 王梦月, 韩永龙. 骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 624-630. |
[14] | 陈奕馨, 程丽珍, 林祎嘉, 苗雅. 2型糖尿病脑病小鼠海马中转录因子EB活性与自噬功能的变化[J]. 上海交通大学学报(医学版), 2023, 43(2): 162-170. |
[15] | 刘铁鑫, 林俊卿, 郑宪友. 靶向亚细胞结构治疗脊髓损伤的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 230-236. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||