1 |
REDDEL H K, BACHARIER L B, BATEMAN E D, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes[J]. Eur Respir J, 2022, 59(1): 2102730.
|
2 |
MILLER R L, GRAYSON M H, STROTHMAN K. Advances in asthma: new understandings of asthma′s natural history, risk factors, underlying mechanisms, and clinical management[J]. J Allergy Clin Immunol, 2021, 148(6): 1430-1441.
|
3 |
GOHY S, HUPIN C, LADJEMI M Z, et al. Key role of the epithelium in chronic upper airways diseases[J]. Clin Exp Allergy, 2020, 50(2): 135-146.
|
4 |
CALVÉN J, AX E, RÅDINGER M. The airway epithelium: a central player in asthma pathogenesis[J]. Int J Mol Sci, 2020, 21(23): E8907.
|
5 |
NOUREDDINE N, CHALUBINSKI M, WAWRZYNIAK P. The role of defective epithelial barriers in allergic lung disease and asthma development[J]. J Asthma Allergy, 2022, 15: 487-504.
|
6 |
HELLINGS P W, STEELANT B. Epithelial barriers in allergy and asthma[J]. J Allergy Clin Immunol, 2020, 145(6): 1499-1509.
|
7 |
LEGENDRE M, ZARAGOSI L E, MITCHISON H M. Motile cilia and airway disease[J]. Semin Cell Dev Biol, 2021, 110: 19-33.
|
8 |
GHEZZI M, POZZI E, ABBATTISTA L, et al. Barrier impairment and type 2 inflammation in allergic diseases: the pediatric perspective[J]. Children (Basel), 2021, 8(12): 1165.
|
9 |
MORETTA A, SCIEUZO C, PETRONE A M, et al. Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields[J]. Front Cell Infect Microbiol, 2021, 11: 668632.
|
10 |
VON MUTIUS E, SMITS H H. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention[J]. Lancet, 2020, 396(10254): 854-866.
|
11 |
GON Y, HASHIMOTO S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma[J]. Allergol Int, 2018, 67(1): 12-17.
|
12 |
LI B, ZOU Z, MENG F, et al. Dust mite-derived Der f 3 activates a pro-inflammatory program in airway epithelial cells via PAR-1 and PAR-2[J]. Mol Immunol, 2019, 109: 1-11.
|
13 |
REDES J L, BASU T, RAM-MOHAN S, et al. Aspergillus fumigatus-secreted alkaline protease 1 mediates airways hyperresponsiveness in severe asthma[J]. ImmunoHorizons, 2019, 3(8): 368-377.
|
14 |
GASPAR R, DE MATOS M R, CORTES L, et al. Pollen proteases play multiple roles in allergic disorders[J]. Int J Mol Sci, 2020, 21(10): 3578.
|
15 |
GODBOLD G D, KAPPELL A D, LESASSIER D S, et al. Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis[J]. Infect Immun, 2022, 90(5): e0033421.
|
16 |
LOOI K, BUCKLEY A G, RIGBY P J, et al. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma[J]. Clin Exp Allergy, 2018, 48(5): 513-524.
|
17 |
MILLS J T, SCHWENZER A, MARSH E K, et al. Airway epithelial cells generate pro-inflammatory tenascin-C and small extracellular vesicles in response to TLR3 stimuli and Rhinovirus infection[J]. Front Immunol, 2019, 10: 1987.
|
18 |
BOULET L P. Airway remodeling in asthma: update on mechanisms and therapeutic approaches[J]. Curr Opin Pulm Med, 2018, 24(1): 56-62.
|
19 |
MIETHE S, GUARINO M, ALHAMDAN F, et al. Effects of obesity on asthma: immunometabolic links[J]. Pol Arch Intern Med, 2018, 128(7/8): 469-477.
|
20 |
MICHALIK M, WÓJCIK-PSZCZOŁA K, PAW M, et al. Fibroblast-to-myofibroblast transition in bronchial asthma[J]. Cell Mol Life Sci, 2018, 75(21): 3943-3961.
|
21 |
ROUT-PITT N, FARROW N, PARSONS D, et al. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology[J]. Respir Res, 2018, 19(1): 136.
|
22 |
ANDERSON E D, ALISHAHEDANI M E, MYLES I A. Epithelial-mesenchymal transition in atopy: a mini-review[J]. Front Allergy, 2020, 1: 628381.
|
23 |
YÜKSEL H, TUNCA S. Destiny of airway disease: interplay between epithelial barrier and the innate immune system[J]. Tissue Barriers, 2022, 10(4): 2020706.
|
24 |
DAVIS J D, WYPYCH T P. Cellular and functional heterogeneity of the airway epithelium[J]. Mucosal Immunol, 2021, 14(5): 978-990.
|
25 |
WHETSTONE C E, RANJBAR M, OMER H, et al. The role of airway epithelial cell alarmins in asthma[J]. Cells, 2022, 11(7): 1105.
|
26 |
KLIMOV V, CHEREVKO N, KLIMOV A, et al. Neuronal-immune cell units in allergic inflammation in the nose[J]. Int J Mol Sci, 2022, 23(13): 6938.
|
27 |
BOROWCZYK J, SHUTOVA M, BREMBILLA N C, et al. IL-25 (IL-17E) in epithelial immunology and pathophysiology[J]. J Allergy Clin Immunol, 2021, 148(1): 40-52.
|
28 |
DENG C, PENG N, TANG Y, et al. Roles of IL-25 in type 2 inflammation and autoimmune pathogenesis[J]. Front Immunol, 2021, 12: 691559.
|
29 |
WANG W, LI Y, LV Z, et al. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa[J]. J Immunol, 2018, 201(8): 2221-2231.
|
30 |
HARTUNG F, ESSER-VON BIEREN J. Trained immunity in type 2 immune responses[J]. Mucosal Immunol, 2022, 15(6): 1158-1169.
|
31 |
SAIKUMAR JAYALATHA A K, HESSE L, KETELAAR M E, et al. The central role of IL-33/IL-1RL1 pathway in asthma: from pathogenesis to intervention[J]. Pharmacol Ther, 2021, 225: 107847.
|
32 |
HUANG R F, MAO W, WANG G L, et al. Synergistic relationship between TSLP and IL-33/ST2 signaling pathways in allergic rhinitis and the effects of hypoxia[J]. Int Forum Allergy Rhinol, 2020, 10(4): 511-520.
|
33 |
YAO X J, LIU X F, WANG X D. Potential role of interleukin-25/interleukin-33/thymic stromal lymphopoietin-fibrocyte axis in the pathogenesis of allergic airway diseases[J]. Chin Med J (Engl), 2018, 131(16): 1983-1989.
|
34 |
AKAR-GHIBRIL N, CASALE T, CUSTOVIC A, et al. Allergic endotypes and phenotypes of asthma[J]. J Allergy Clin Immunol Pract, 2020, 8(2): 429-440.
|
35 |
MENZIES-GOW A, CORREN J, BOURDIN A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma[J]. N Engl J Med, 2021, 384(19): 1800-1809.
|
36 |
BACHARIER L B, JACKSON D J. Biologics in the treatment of asthma in children and adolescents[J]. J Allergy Clin Immunol, 2023, 151(3): 581-589.
|
37 |
WECHSLER M E, RUDDY M K, PAVORD I D, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma[J]. N Engl J Med, 2021, 385(18): 1656-1668.
|
38 |
AnaptysBio, Inc. Efficacy, safety, and pharmacokinetic profile of etokimab (ANB020) in adult participants with moderate-to-severe atopic dermatitis (ATLAS)[EB/OL]. [2022-11-20]. https://clinicaltrials.gov/ct2/show/NCT03533751.
|