上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (5): 624-630.doi: 10.3969/j.issn.1674-8115.2023.05.014
• 综述 • 上一篇
魏兰懿1(), 薛晓川1, 陈君君1, 杨全军1, 王梦月2, 韩永龙1()
收稿日期:
2023-02-03
接受日期:
2023-03-30
出版日期:
2023-05-28
发布日期:
2023-07-11
通讯作者:
韩永龙
E-mail:26062x@sjtu.edu.cn;yonglongh@126.com
作者简介:
魏兰懿(1998—),女,硕士生;电子信箱:26062x@sjtu.edu.cn。
基金资助:
WEI Lanyi1(), XUE Xiaochuan1, CHEN Junjun1, YANG Quanjun1, WANG Mengyue2, HAN Yonglong1()
Received:
2023-02-03
Accepted:
2023-03-30
Online:
2023-05-28
Published:
2023-07-11
Contact:
HAN Yonglong
E-mail:26062x@sjtu.edu.cn;yonglongh@126.com
Supported by:
摘要:
骨肉瘤(osteosarcoma,OS)是儿童和青少年常见的原发性恶性骨肿瘤,其易复发性和高转移率已成为目前临床亟待解决的难题,尚无有效的治疗方法。近年来有研究提示靶向肿瘤微环境很有可能成为OS新的治疗方向。肿瘤微环境中免疫细胞浸润可促进肿瘤炎症发生和肿瘤血管生成。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)是肿瘤微环境中最重要的免疫细胞,在OS发展及转移中发挥重要作用。该文综述了TAMs极化对肿瘤细胞的作用,并从TAMs影响OS肿瘤生长及侵袭转移,介导OS化学治疗耐药、干细胞样表型以及免疫抑制方面,分析TAMs对OS发生和发展过程的影响;总结近年通过靶向TAMs发挥对OS治疗作用的研究进展,包括影响TAMs募集、促使M2型TAMs向M1型极化、靶向CD47促进TAMs的吞噬作用和靶向TAMs免疫检查点,旨在为OS的靶向治疗提供新方向和新思路。
中图分类号:
魏兰懿, 薛晓川, 陈君君, 杨全军, 王梦月, 韩永龙. 骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 624-630.
WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 624-630.
1 | KELLEHER F C, O′SULLIVAN H. Monocytes, macrophages, and osteoclasts in osteosarcoma[J]. J Adolesc Young Adult Oncol, 2017, 6(3): 396-405. |
2 | HUANG Q, LIANG X, REN T, et al. The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications[J]. Cell Oncol (Dordr), 2021, 44(3): 525-539. |
3 | SPALATO M, ITALIANO A. The safety of current pharmacotherapeutic strategies for osteosarcoma[J]. Expert Opin Drug Saf, 2021, 20(4): 427-438. |
4 | CHONG Z X, YEAP S K, HO W Y. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma[J]. Pharmacol Res, 2021, 172: 105818. |
5 | RUFFELL B, COUSSENS L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472. |
6 | ZHU T, HAN J, YANG L, et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications[J]. Front Immunol, 2022, 13: 907550. |
7 | XUE R, ZHANG Q, CAO Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity[J]. Nature, 2022, 612(7938): 141-147. |
8 | 折胜利, 宋兴华, 周杨, 等. 骨肉瘤细胞外泌体调控JAK2/STAT3信号通路影响成纤维细胞向肿瘤相关成纤维细胞转化 [J]. 西部医学, 2021, 33(8): 1096-1100, 1105. |
ZHE S L, SONG X H, ZHOU Y, et al. Effects of osteosarcoma cell exosomes on the transformation of fibroblasts into tumor-associated fibroblasts by regulating JAK2/STAT3 signaling pathway [J]. Western Medicine, 2021, 33(8): 1096-1100, 1105. | |
9 | 刘汉涛, 赵良虎, 秦宏敏. 骨髓间充质干细胞外泌体miR-25-3p调控骨肉瘤细胞增殖迁移及侵袭能力的功能与机制研究 [J]. 河北医学, 2022, 28(4): 529-534. |
LIU H T, ZHAO L H, QIN H M. Study on the function and mechanism of bone marrow mesenchymal stem cell exosomal miR-25-3p regulating the proliferation, migration and invasion of osteosarcoma cells [J]. Hebei Medicine, 2022, 28(4): 529-534. | |
10 | WEI C, YANG C, WANG S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. |
11 | NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61. |
12 | MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820. |
13 | ANDERSON P M, MEYERS P, KLEINERMAN E, et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments[J]. Pediatr Blood Cancer, 2014, 61(2): 238-244. |
14 | HEYMANN M F, LÉZOT F, HEYMANN D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[J]. Cell Immunol, 2019, 343: 103711. |
15 | XIE D, WANG Z, LI J, et al. Targeted delivery of chemotherapeutic agents for osteosarcoma treatment[J]. Front Oncol, 2022, 12: 843345. |
16 | 刘莹莹, 文金生, 邢景军, 等. 原发性恶性骨肿瘤免疫疗法研究现状及展望 [J]. 生命的化学, 2022, 42(2): 283-290. |
LIU Y Y, WEN J S, XING J J, et al. Research status and prospect of immunotherapy for primary malignant bone tumors [J]. Chemistry of Life, 2022, 42(2): 283-290. | |
17 | NIU J, YAN T, GUO W, et al. Identification of potential therapeutic targets and immune cell infiltration characteristics in osteosarcoma using bioinformatics strategy[J]. Front Oncol, 2020, 10: 1628. |
18 | QIU S Q, WAAIJER S J H, ZWAGER M C, et al. Tumor-associated macrophages in breast cancer: innocent bystander or important player?[J]. Cancer Treat Rev, 2018, 70: 178-189. |
19 | LIU Y, FENG W, DAI Y, et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma[J]. Front Oncol, 2021, 11: 709210. |
20 | REN S, ZHANG X, HU Y, et al. Blocking the Notch signal transduction pathway promotes tumor growth in osteosarcoma by affecting polarization of TAM to M2 phenotype[J]. Ann Transl Med, 2020, 8(17): 1057. |
21 | LI J, ZHAO C, LI Y, et al. Osteosarcoma exocytosis of soluble LGALS3BP mediates macrophages toward a tumoricidal phenotype[J]. Cancer Lett, 2022, 528: 1-15. |
22 | ZHANG H, LU J, LIU J, et al. Advances in the discovery of exosome inhibitors in cancer[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1322-1330. |
23 | HE F, DING G, JIANG W, et al. Effect of tumor-associated macrophages on lncRNA PURPL/miR-363/PDZD2 axis in osteosarcoma cells[J]. Cell Death Discov, 2021, 7(1): 307. |
24 | CUI J J, WANG Y, XUE H W. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis[J]. Bioengineered, 2022, 13(4): 8370-8381. |
25 | YANG D, LIU K, FAN L, et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-like polarization of tumor-associated macrophages of CPEB4[J]. Cancer Lett, 2020, 473: 33-49. |
26 | ZHANG H, YU Y, WANG J, et al. Macrophages-derived exosomal lncRNA LIFR-AS1 promotes osteosarcoma cell progression via miR-29a/NFIA axis[J]. Cancer Cell Int, 2021, 21(1): 192. |
27 | ZHONG L, LIAO D, LI J, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes[J]. Signal Transduct Target Ther, 2021, 6(1): 59. |
28 | HUO Y, LI Q, WANG X, et al. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2[J]. Oncotarget, 2017, 8(29): 46993-47006. |
29 | WANG W, SHEN H, CAO G, et al. Long non-coding RNA XIST predicts poor prognosis and promotes malignant phenotypes in osteosarcoma[J]. Oncol Lett, 2019, 17(1): 256-262. |
30 | WANG X, ZOU J, CHEN H, et al. Long noncoding RNA NORAD regulates cancer cell proliferation and migration in human osteosarcoma by endogenously competing with miR-199a-3p[J]. IUBMB Life, 2019, 71(10): 1482-1491. |
31 | ZHANG B, ZHANG Y, LI R, et al. The efficacy and safety comparison of first-line chemotherapeutic agents (high-dose methotrexate, doxorubicin, cisplatin, and ifosfamide) for osteosarcoma: a network meta-analysis[J]. J Orthop Surg Res, 2020, 15(1): 51. |
32 | HAN Y, GUO W, REN T, et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis[J]. Cancer Lett, 2019, 440/441: 116-125. |
33 | SU Y, ZHOU Y, SUN Y J, et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1[J]. J Mol Med (Berl), 2019, 97(1): 49-61. |
34 | CHENG Z, WANG L, WU C, et al. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through tim-3[J]. Arch Med Res, 2021, 52(2): 200-210. |
35 | QUERO L, TIADEN A N, HANSER E, et al. miR-221-3p drives the shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation [J]. Front Immunol, 2019, 10: 3087. |
36 | CHEN Y, TANG G, QIAN H, et al. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization[J]. Aging (Albany NY), 2021, 13(10): 14258-14276. |
37 | CAO H, QUAN S, ZHANG L, et al. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma[J]. Oncol Lett, 2021, 21(5): 391. |
38 | SONG Y J, XU Y, ZHU X, et al. Immune landscape of the tumor microenvironment identifies prognostic gene signature CD4/CD68/CSF1R in osteosarcoma[J]. Front Oncol, 2020, 10: 1198. |
39 | LIANG X, GUO W, REN T, et al. Macrophages reduce the sensitivity of osteosarcoma to neoadjuvant chemotherapy drugs by secreting Interleukin-1 beta[J]. Cancer Lett, 2020, 480: 4-14. |
40 | LUO Z W, LIU P P, WANG Z X, et al. Macrophages in osteosarcoma immune microenvironment: implications for immunotherapy[J]. Front Oncol, 2020, 10: 586580. |
41 | ZHENG P, CHEN L, YUAN X, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 53. |
42 | DONG X, SUN R, WANG J, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer[J]. Biochem Pharmacol, 2020, 182: 114289. |
43 | NAJAFI M, FARHOOD B, MORTEZAEE K. Cancer stem cells (CSCs) in cancer progression and therapy[J]. J Cell Physiol, 2019, 234(6): 8381-8395. |
44 | YANG L, DONG Y, LI Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145(4): 1099-1110. |
45 | SHAO X J, XIANG S F, CHEN Y Q, et al. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells[J]. Acta Pharmacol Sin, 2019, 40(10): 1343-1350. |
46 | 吴婧婧, 孙妩弋, 魏伟. 肿瘤相关巨噬细胞在肝癌中的作用及靶向治疗研究进展 [J]. 安徽医科大学学报, 2017, 52(12): 1901-1905. |
WU J J, SUN W Y, WEI W. Research progress on the role of tumor-associated macrophages in liver cancer and targeted therapy [J]. Journal of Anhui Medical University, 2017, 52(12): 1901-1905. | |
47 | 宋呈祥. CTRP9对小鼠巨噬细胞胞葬作用的影响及机制研究 [D]. 济南:山东大学, 2021. |
SONG C X. The effect of CTRP9 on the efferocytosis of mouse macrophages and its mechanism [D]. Jinan: Shandong University, 2021. | |
48 | MYERS K V, AMEND S R, PIENTA K J. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 94. |
49 | DORAN A C, YURDAGUL A, TABAS I. Efferocytosis in health and disease[J]. Nat Rev Immunol, 2020, 20(4): 254-267. |
50 | 高松, 徐培钧, 郝继辉. 巨噬细胞在肿瘤发展及治疗中的研究进展 [J]. 中国细胞生物学学报, 2022, 44(4): 572-582. |
GAO S, XU P J, HAO J H. Research progress of macrophages in tumor development and treatment [J]. Chinese Journal of Cell Biology, 2022, 44(4): 572-582. | |
51 | ZHAO S J, JIANG Y Q, XU N W, et al. SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex[J]. Oncogene, 2018, 37(8): 1049-1061. |
52 | RIBEIRO N, SOUSA S R, BREKKEN R A, et al. Role of SPARC in bone remodeling and cancer-related bone metastasis [J]. J Cell Biochem, 2014, 115(1): 17-26. |
53 | SÉGALINY A I, MOHAMADI A, DIZIER B, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J]. Int J Cancer, 2015, 137(1): 73-85. |
54 | CHEN D, XIE J, FISKESUND R, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype[J]. Nat Commun, 2018, 9(1): 873. |
55 | XIAO Q, ZHANG X, WU Y, et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma [J]. Tumour Biol, 2014, 35(8): 7611-7616. |
56 | PUNZO F, BELLINI G, TORTORA C, et al. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells [J]. Oncotarget, 2020, 11(7): 687-698. |
57 | 尹芳芳, 许磊晶, 贺美娟, 等. 甲氨蝶呤诱导巨噬细胞M1极化促进骨肉瘤细胞凋亡的实验研究 [J]. 现代生物医学进展, 2020, 20(11): 2006-2011. |
YIN F F, XU L J, HE M J, et al. Methotrexate induces M1 polarization of macrophages and promotes apoptosis of osteosarcoma cells [J]. Advances in Modern Biomedicine, 2020, 20(11): 2006-2011. | |
58 | GOWD V, AHMAD A, TARIQUE M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine[J]. Semin Cancer Biol, 2022, 86(pt 2): 624-644. |
59 | ZHANG Y, YUAN T, LI Z, et al. Hyaluronate-based self-stabilized nanoparticles for immunosuppression reversion and immunochemotherapy in osteosarcoma treatment[J]. ACS Biomater Sci Eng, 2021, 7(4): 1515-1525. |
60 | MOHANTY S, YERNENI K, THERUVATH J L, et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 MAb immunotherapy in osteosarcoma[J]. Cell Death Dis, 2019, 10(2): 36. |
61 | XU J F, PAN X H, ZHANG S J, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models[J]. Oncotarget, 2015, 6(27): 23662-23670. |
62 | MOHANTY S, AGHIGHI M, YERNENI K, et al. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don′t eat me’ signals off and ‘eat me’ signals on[J]. Mol Oncol, 2019, 13(10): 2049-2061. |
63 | 王成吕, 聂玉洁, 潘润桑, 等. 三种新兴的免疫检查点分子在肿瘤免疫治疗中的研究进展 [J]. 现代肿瘤医学, 2022, 30(7): 1308-1312. |
WANG C L, NIE Y J, PAN R S, et al. Research progress of three emerging immune checkpoint molecules in tumor immunotherapy [J]. Modern Oncology Medicine, 2022, 30(7): 1308-1312. | |
64 | 曾峥, 罗丹玲, 钟明利, 等. 免疫检查点抑制剂抗肿瘤作用的影响因素研究进展 [J]. 中南药学, 2022, 20(8): 1867-1874. |
ZENG Z, LUO D L, ZHONG M L, et al. Research progress on influencing factors of anti-tumor effect of immune checkpoint inhibitors [J]. Zhongnan Pharmacy, 2022, 20(8): 1867-1874. | |
65 | ZHENG B, REN T, HUANG Y, et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse[J]. J Hematol Oncol, 2018, 11(1): 16. |
66 | LIGON J A, CHOI W, COJOCARU G, et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes[J]. J Immunother Cancer, 2021, 9(5): e001772 |
67 | TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-2454. |
[1] | 梅艳青, 韩雨洁, 翁文筠, 张蕾, 唐玉杰. 靶向抑制CDK12/13在高级别胶质瘤中的体外治疗效果和作用分子机制探究[J]. 上海交通大学学报(医学版), 2023, 43(5): 545-559. |
[2] | 徐瀛濂, 田静, 张翔, 赵顺英. 气道上皮细胞在哮喘发病机制中的作用研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 619-623. |
[3] | 刘铁鑫, 林俊卿, 郑宪友. 靶向亚细胞结构治疗脊髓损伤的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(2): 230-236. |
[4] | 马芳芳, 秦洁洁, 任灵杰, 唐笑梅, 刘佳, 施敏敏, 蒋玲曦. 基于水凝胶微球建立胰腺癌原代细胞的3D培养模型[J]. 上海交通大学学报(医学版), 2023, 43(1): 79-87. |
[5] | 韩永琪, 韩达, 閤谦, 姬丁坤, 谭蔚泓. 核酸适体药物偶联物——肿瘤精准治疗新风向[J]. 上海交通大学学报(医学版), 2022, 42(9): 1176-1181. |
[6] | 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130. |
[7] | 王雨心, 孙瑞琪, 刘坚华, 何伟娜. 开发用于肿瘤微环境成像的pH敏感荧光探针[J]. 上海交通大学学报(医学版), 2022, 42(7): 875-884. |
[8] | 戚炀炀, 熊鹰. Galectin-9阳性肿瘤相关巨噬细胞在肌层浸润性膀胱癌中的表型、功能及临床治疗意义[J]. 上海交通大学学报(医学版), 2022, 42(12): 1666-1676. |
[9] | 李若楠, 陈小科, 许元元, 谭强. ⅠB~ⅢA期非小细胞肺癌患者术后辅助靶向治疗研究进展[J]. 上海交通大学学报(医学版), 2022, 42(11): 1612-1619. |
[10] | 李静威, 王俐文, 蒋玲曦, 詹茜, 陈皓, 沈柏用. 胰腺癌免疫抑制性肿瘤微环境研究综述[J]. 上海交通大学学报(医学版), 2021, 41(8): 1103-1108. |
[11] | 那迪娜·帕尔哈提null, 严妍, 车千纪, 罗菁, 刘鑫男, 李斌. 嵌合抗原受体T细胞疗法在胶质母细胞瘤中的应用与展望[J]. 上海交通大学学报(医学版), 2021, 41(7): 982-986. |
[12] | 张佳玲, 张凤春, 徐迎春. 乳腺癌脑转移系统治疗的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(5): 671-677. |
[13] | 顾琦晟, 张米粒, 曹灿, 李继坤. 基于TCGA数据库分析胃癌可变剪接与肿瘤免疫的关系[J]. 上海交通大学学报(医学版), 2021, 41(4): 448-458. |
[14] | 刘梦珂, 纪濛濛, 程林, 黄金艳, 孙晓建, 赵维莅, 王黎. 黄芩苷抗肿瘤作用机制的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 246-250. |
[15] | 赵伟光,刘志宏. 肿瘤相关成纤维细胞调控肿瘤免疫炎症微环境的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(9): 1288-1293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||