收稿日期: 2024-05-09
录用日期: 2024-11-11
网络出版日期: 2025-03-28
基金资助
国家自然科学基金(82071160);上海交通大学医学院“双百人”项目(20191832)
Single narrow-diameter implant-supported dual-unit cantilever restorations for consecutive missing teeth in the anterior mandible: a 3D finite element analysis
Received date: 2024-05-09
Accepted date: 2024-11-11
Online published: 2025-03-28
Supported by
National Natural Science Foundation of China(82071160);“Two-hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20191832)
目的·探究单颗窄直径种植体支持的双单元悬臂修复在下颌前牙区连续缺失情况下的适用性。方法·构建简化的下颌前牙区颌骨模型与单颗窄直径种植体支持的双单元悬臂模型。下颌前牙区的骨块长度、宽度、高度分别设定为20、5、15 mm。采用的窄直径种植体为Axiom 2.8两段式窄直径种植体,型号为2.8 mm×10 mm,基台为高度2.5 mm的直角基台。通过计算,设定缺牙间隙的范围为5.8~11.6 mm,故建立牙冠近远中宽度分别为5.8、6.8、7.8、8.8、9.8、10.8、11.8 mm的7组牙冠模型。将种植体、牙冠与颌骨模型通过Siemens Nx 12.0软件整合装配,然后将数据导入Ansys Workbench 18.0软件中进行有限元分析。模拟施加100 N的垂直向加载及斜向30°加载,分析种植体Von-Mises应力值及种植体周围皮质骨最大压应力、皮质骨最大拉应力和松质骨最大拉应力,探讨悬臂长度变化时相关应力的变化情况。结果·种植体颈部为主要应力集中区域。随着悬臂长度的增加,种植体的Von-Mises应力峰值、皮质骨及松质骨的最大拉应力值、皮质骨的最大压应力绝对值均逐渐增大,但是所有应力值均在生理承受范围内。测算得到的种植体Von-Mises应力峰值范围介于141.52~707.17 MPa,均小于其极限抗拉强度930 Mpa;皮质骨的最大拉应力(最大值为11.8 mm组的60.82 MPa)均小于皮质骨的抗拉极限100~130 MPa,而皮质骨的最大压应力绝对值(绝对值最大值为11.8 mm组的129.39 MPa)则均小于皮质骨的抗压极限绝对值170~190 MPa;松质骨的最大拉应力范围介于0.84~4.70 MPa,均小于或接近其极限强度2~5 MPa。结论·单颗窄直径种植体支持的双单元悬臂修复可能是一种可行的针对下颌前牙区连续缺失的治疗方法。
鲍仁强 , 吕成奇 , 俞律峰 , 陆家瑜 , 邹德荣 . 单颗窄直径种植体支持的双单元悬臂修复下颌前牙区连续缺牙的三维有限元分析[J]. 上海交通大学学报(医学版), 2025 , 45(3) : 301 -309 . DOI: 10.3969/j.issn.1674-8115.2025.03.006
Objective ·To evaluate the applicability of dual-unit cantilever restorations supported by a single narrow-diameter implant for consecutive missing teeth in the anterior mandibular region. Methods ·A simplified mandibular anterior jaw model and a dual-unit cantilever model supported by a single narrow-diameter implant were constructed. The dimensions of the mandibular anterior bone block were set to 20 mm (length), 5 mm (width), and 15 mm (height). The narrow-diameter implant used was the Axiom 2.8 two-stage implant, 2.8 mm×10 mm, paired with a 2.5 mm straight abutment. Based on calculations, the edentulous gap ranged from 5.8 mm to 11.6 mm, leading to the creation of seven crown models with mesiodistal widths of 5.8, 6.8, 7.8, 8.8, 9.8, 10.8, and 11.8 mm. The implant, crowns, and jaw model were assembled using Siemens Nx 12.0 software, and the data were imported into Ansys Workbench 18.0 for finite element analysis. A vertical load of 100 N and a 30° oblique load were applied to simulate occlusal forces. The Von-Mises stress on the implants, as well as the maximum compressive and tensile stresses in the cortical bone and the maximum tensile stress in the cancellous bone, was analyzed to investigate stress distribution under varying cantilever lengths. Results ·The implant neck region exhibited the highest stress concentration. As the cantilever length increased, the peak Von-Mises stress on the implants, the maximum tensile stress in the cortical and cancellous bones, and the maximum compressive stress in the cortical bones all increased progressively. However, all stress values remained within physiological limits. The peak Von-Mises stress ranged from 141.52 MPa to 707.17 MPa, below the implant′s ultimate tensile strength of 930 MPa. The maximum tensile stress in the cortical bones (with a peak of 60.82 MPa in the 11.8 mm group) was below the cortical bone′s tensile strength limit of 100‒130 MPa. The maximum compressive stress in the cortical bone (with an absolute maximum value of 129.39 MPa in the 11.8 mm group) was below the cortical bone′s compressive strength limit of 170 to 190 MPa (absolute values). The maximum tensile stress in the cancellous bone ranged from 0.84 MPa to 4.70 MPa, which was below or close to its ultimate tensile strength of 2‒5 MPa. Conclusion ·Dual-unit cantilever restorations supported by a single narrow-diameter implant may represent a viable treatment option for consecutive missing teeth in the anterior mandibular region.
1 | 蔡芸舟, 李熠洁, 杨艳青, 等. 种植修复的发展现状与不足[J]. 医学信息, 2021, 34(9): 37-39, 44. |
CAI Y Z, LI Y J, YANG Y Q, et al. Development status and shortcomings of planting restoration[J]. Medical Information, 2021, 34(9): 37-39, 44. | |
2 | 杨凯文, 刘艾芃, 王晓华, 等. 水平骨量不足情况下种植牙的研究进展[J]. 医学综述, 2020, 26(22): 4450-4456. |
YANG K W, LIU A P, WANG X H, et al. Research progress of dental implants under condition of insufficient horizontal alveolar bone[J]. Medical Recapitulate, 2020, 26(22): 4450-4456. | |
3 | JOHN J, RANGARAJAN V, SAVADI R C, et al. A finite element analysis of stress distribution in the bone, around the implant supporting a mandibular overdenture with Ball/O ring and magnetic attachment[J]. J Indian Prosthodont Soc, 2012, 12(1): 37-44. |
4 | SEVIMAY M, TURHAN F, KILI?ARSLAN M A, et al. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown[J]. J Prosthet Dent, 2005, 93(3): 227-234. |
5 | ZAREI M, JAHANGIRNEZHAD M, YOUSEFIMANESH H, et al. A comparative study on the stress distribution around dental implants in three arch form models for replacing six implants using finite element analysis[J]. J Indian Soc Periodontol, 2018, 22(2): 127-132. |
6 | ZUPANCIC CEPIC L, FRANK M, REISINGER A, et al. Biomechanical finite element analysis of short-implant-supported, 3-unit, fixed CAD/CAM prostheses in the posterior mandible[J]. Int J Implant Dent, 2022, 8(1): 8. |
7 | KüMBüLO?LU ?, KOYUNCU B, YERLIO?LU G, et al. Stress distribution on various implant-retained bar overdentures[J]. Materials (Basel), 2022, 15(9): 3248. |
8 | UNSAL G S. Three-dimensional finite element analysis of different implant configurations in enlarged first molar areas[J]. Int J Oral Maxillofac Implants, 2020, 35(4): 675-683. |
9 | CINEL S, CELIK E, SAGIRKAYA E, et al. Experimental evaluation of stress distribution with narrow diameter implants: a finite element analysis[J]. J Prosthet Dent, 2018, 119(3): 417-425. |
10 | 张雨晗, 谢伟丽. 不同长度种植体支持单端固定桥的三维有限元分析[J]. 哈尔滨医科大学学报, 2021, 55(6): 574-578. |
ZHANG Y H, XIE W L. Three-dimensional finite element analysis of cantilever fixed bridges supported by implants of different lengths[J]. Journal of Harbin Medical University, 2021, 55(6): 574-578. | |
11 | 夏昭鑫, 高亦辰, 邓雨瑶, 等. 不同材料种植体修复单颗上前牙缺失的三维有限元分析[J]. 中国组织工程研究, 2025, 29(22): 4687-4693. |
XIA Z X, GAO Y C, DENG Y Y, et al. Three-dimensional finite element analysis of different material implants for replacing single missing anterior tooth[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(22): 4687-4693. | |
12 | 王岚, 秦思琪, 陈思宇, 等. 三维有限元分析法在口腔种植学中的应用进展[J]. 现代医药卫生, 2022, 38(6): 995-999. |
WANG L, QIN S Q, CHEN S Y, et al. Progress in the application of three-dimensional finite element analysis in oral implantology[J]. Journal of Modern Medicine & Health, 2022, 38(6): 995-999. | |
13 | MEIJER H J A, STELLINGSMA K, POL C W P, et al. Dental implant treatment for two adjacent missing teeth in the esthetic region: a systematic review and 10-year results of a prospective comparative pilot study[J]. Clin Exp Dent Res, 2023, 9(6): 954-968. |
14 | TAHA A, AL-SHAHAT M A, GHAZY M. Clinical and radiographic evaluations of implant-supported cantilever fixed partial dentures replacing maxillary anterior teeth: a randomized clinical trial[J]. J Prosthet Dent, 2020, 124(6): 659-666. |
15 | WANG S C, WANG J C, CHANG C J, et al. Interdisciplinary treatment with implant-supported two-unit cantilever prosthesis for a patient with hypodontia: a clinical report[J]. J Prosthet Dent, 2023, 129(5): 676-680. |
16 | RUES S, KAPPEL S, RUCKES D, et al. Resistance to fracture in fixed dental prostheses over cemented and screw-retained implant-supported zirconia cantilevers in the anterior region: an in vitro study[J]. Int J Oral Maxillofac Implants, 2020, 35(3): 521-529. |
17 | ROCCUZZO A, JENSEN S S, WORSAAE N, et al. Implant-supported 2-unit cantilevers compared with single crowns on adjacent implants: a comparative retrospective case series[J]. J Prosthet Dent, 2020, 123(5): 717-723. |
18 | MOSAVAR A, NILI M, HASHEMI S R, et al. A comparative analysis on two types of oral implants, bone-level and tissue-level, with different cantilever lengths of fixed prosthesis[J]. J Prosthodont, 2017, 26(4): 289-295. |
19 | KANG N, WU Y Y, GONG P, et al. A study of force distribution of loading stresses on implant-bone interface on short implant length using 3-dimensional finite element analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 118(5): 519-523. |
20 | CORRêA C B, MARGONAR R, NORITOMI P Y, et al. Mechanical behavior of dental implants in different positions in the rehabilitation of the anterior maxilla[J]. J Prosthet Dent, 2014, 111(4): 301-309. |
21 | KIM P, IVANOVSKI S, LATCHAM N, et al. The impact of cantilevers on biological and technical success outcomes of implant-supported fixed partial dentures. A retrospective cohort study[J]. Clin Oral Implants Res, 2014, 25(2): 175-184. |
22 | PALMER R M, HOWE L C, PALMER P J, et al. A prospective clinical trial of single Astra Tech 4.0 or 5.0 diameter implants used to support two-unit cantilever bridges: results after 3 years[J]. Clin Oral Implants Res, 2012, 23(1): 35-40. |
23 | 张先玉, 赵鹏, 许嘉琳, 等. 种植体支持式单端悬臂桥的中短期临床评价[J]. 中国实用口腔科杂志, 2023, 16(1): 70-75. |
ZHANG X Y, ZHAO P, XU J L, et al. Clinical evaluation of implant-supported prostheses with cantilever in short and mid-term period[J]. Chinese Journal of Practical Stomatology, 2023, 16(1): 70-75. | |
24 | SCHIEGNITZ E, AL-NAWAS B. Narrow-diameter implants: a systematic review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29 (Suppl 16): 21-40. |
25 | BARBOSA F T, ZANATTA L C S, DE SOUZA RENDOHL E, et al. Comparative analysis of stress distribution in one-piece and two-piece implants with narrow and extra-narrow diameters: a finite element study[J]. PLoS One, 2021, 16(2): e0245800. |
26 | 刘东升, 王彦梅, 何家才. 钛锆小直径种植体应用于前牙美学区的临床效果[J]. 口腔疾病防治, 2019, 27(7): 446-450. |
LIU D S, WANG Y M, HE J C. Clinical effect of titanium-zirconium small-diameter implants in the anterior esthetic zone[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019, 27(7): 446-450. | |
27 | 黄燕霞. 窄直径种植体修复上颌中切牙缺失的效果观察[J]. 现代诊断与治疗, 2020, 31(8): 1270-1271. |
HUANG Y X. Observation on the effect of narrow diameter implants in the restoration of missing maxillary central incisors[J]. Modern Diagnosis and Treatment, 2020, 31(8): 1270-1271. | |
28 | SHI J Y, XU F Y, ZHUANG L F, et al. Long-term outcomes of narrow diameter implants in posterior jaws: a retrospective study with at least 8-year follow-up[J]. Clin Oral Implants Res, 2018, 29(1): 76-81. |
29 | ASSAF A, SAAD M, HIJAWI S. Use of narrow-diameter implants in the posterior segments of the jaws: a retrospective observational study of 2 to 11 years[J]. J Prosthet Dent, 2023, 130(6): 840-848. |
30 | DE SOUZA A B, SUKEKAVA F, TOLENTINO L, et al. Narrow- and regular-diameter implants in the posterior region of the jaws to support single crowns: a 3-year split-mouth randomized clinical trial[J]. Clin Oral Implants Res, 2018, 29(1): 100-107. |
/
〈 |
|
〉 |