收稿日期: 2024-10-30
录用日期: 2024-12-20
网络出版日期: 2025-04-28
基金资助
上海市自然科学基金(20ZR1442500)
Effects and mechanisms of liraglutide in ameliorating liver fibrosis in NAFLD mice
Received date: 2024-10-30
Accepted date: 2024-12-20
Online published: 2025-04-28
Supported by
Natural Science Foundation of Shanghai(20ZR1442500)
目的·探讨利拉鲁肽对非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)小鼠肝纤维化的作用及其机制。方法·将20只8周龄C57BL/6J小鼠随机分为正常饮食组(Chow组)及甲硫氨酸-胆碱缺乏(methionine-choline deficient,MCD)饮食喂养组(MCD组),每组10只。采用MCD饮食诱导构建NAFLD小鼠。将2组小鼠随机分为4个亚组,分别为Chow+生理盐水组、Chow+利拉鲁肽组、MCD+生理盐水组、MCD+利拉鲁肽组。每日分别腹腔注射利拉鲁肽(400 μg/kg)或同体积生理盐水4周后,行腹腔注射葡萄糖耐量实验(intraperitoneal glucose tolerance test,IPGTT)。测定小鼠血清天冬氨酸转氨酶(aspartate transaminase,AST)、丙氨酸转氨酶(alanine aminotransferase,ALT)、总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TAG)、高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C)水平。小鼠处死后取其肝组织测定TAG含量,对肝组织行苏木精-伊红(hematoxylin-eosin,HE)染色、油红O染色及马松(Masson)染色观察肝脏病理结构、脂质沉积和纤维化程度。采用实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction,qPCR)与Western blotting检测肝组织α平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、纤连蛋白(fibronectin,FN)、Ⅰ型胶原蛋白α(collagen type Ⅰ α,COL1A)、基质金属蛋白酶9(matrix metallo protein 9,MMP9)、金属蛋白酶组织抑制因子1(tissue inhibitor of metal protease 1,TIMP1)和转化生长因子β(transforming growth factor-β,TGF-β)表达水平,检测Sma和Mad相关蛋白3(Sma- and Mad-related protein 3,SMAD3)及磷酸化SMAD3(SMAD3 phosphorylation,pSMAD3)蛋白表达水平。结果·利拉鲁肽干预后,IPGTT显示小鼠血糖在第15、30、60 min时均有所下降,受试者操作特征曲线(receiver operator characteristic curve,ROC曲线)的曲线下面积(area under the curve,AUC)降低(均P<0.05)。血清生化检测结果显示,利拉鲁肽干预后,MCD组小鼠AST与ALT水平降低(均P<0.001),TC、HDL-C水平升高(均P<0.05),TAG、LDL-C无明显变化。HE染色与油红O染色显示,利拉鲁肽干预后,肝细胞脂滴数量明显减少,气球样变性和炎症浸润程度减轻。Masson染色显示,利拉鲁肽干预后,MCD组小鼠肝脏蓝色胶原纤维数量明显减少。qPCR与Western blotting检测显示,MCD组小鼠肝脏α-SMA、FN、COL1A、TIMP1、TGF-β、pSMAD3/SMAD3表达明显上调,MMP9蛋白表达下降;经利拉鲁肽干预后,MCD组小鼠肝脏α-SMA、FN、COL1A、TIMP1、TGF-β、pSMAD3/SMAD3表达明显降低,MMP9表达上升。结论·利拉鲁肽能缓解NAFLD小鼠肝损伤、肝脏脂质沉积及纤维化程度,并通过调控TGF-β/SMAD3通路和纤维化相关蛋白表达改善小鼠肝功能和肝纤维化。
关键词: 利拉鲁肽; 转化生长因子β; Sma和Mad相关蛋白3; 非酒精性脂肪性肝病; 肝纤维化
王仁杰 , 祝超瑜 , 方云云 , 肖元元 , 王倩倩 , 宋雯婧 , 魏丽 . 利拉鲁肽改善非酒精性脂肪性肝病小鼠肝纤维化的作用及其机制[J]. 上海交通大学学报(医学版), 2025 , 45(4) : 415 -425 . DOI: 10.3969/j.issn.1674-8115.2025.04.003
Objective ·To investigate the effects of liraglutide on liver fibrosis in mice with non-alcoholic fatty liver disease (NAFLD) and the underlying mechanisms. Methods ·Twenty 8-week-old C57BL/6J mice were randomly divided into a normal chow diet group (Chow group) and a methionine-choline-deficient (MCD) diet group (MCD group), with 10 mice per group. The MCD diet was used to induce NAFLD. Each group was further divided into two subgroups, resulting in four subgroups: Chow+saline, Chow+liraglutide, MCD+saline, and MCD+liraglutide group. After daily intraperitoneal injection of liraglutide (400 μg/kg) or an equivalent volume of saline for 4 weeks, an intraperitoneal glucose tolerance test (IPGTT) was performed. Serum levels of aspartate transaminase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TAG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured. Liver tissues were collected post-euthanasia to assess TAG content. Histopathological changes, lipid deposition, and fibrosis were evaluated via hematoxylin-eosin (HE) staining, Oil Red O staining, and Masson staining. Real-time quantitative PCR (qPCR) and Western blotting were used to analyze the expression of α-smooth muscle actin (α-SMA), fibronectin (FN), collagen type Ⅰ α (COL1A), matrix metalloproteinase 9 (MMP9), tissue inhibitor of metalloproteinase 1 (TIMP1), transforming growth factor β (TGF-β), SMAD3, and phosphorylated SMAD3 (pSMAD3). Results ·The IPGTT revealed that liraglutide intervention reduced blood glucose levels at 15, 30, and 60 min, with a decreased area under the curve (AUC) (both P<0.05). Biochemical analysis showed that liraglutide lowered AST and ALT levels (both P<0.001), increased TC and HDL-C levels (both P<0.05), but had no significant effect on TAG or LDL-C in MCD mice. HE staining and Oil Red O staining revealed reduced lipid droplets, ballooning degeneration, and inflammatory infiltration in hepatocytes after liraglutide treatment. Masson staining indicated decreased collagen fiber deposition in the liver. qPCR and Western blotting analysis demonstrated upregulated expression of α-SMA, FN, COL1A, TIMP1, TGF-β, and pSMAD3/SMAD3, alongside downregulated MMP9 in MCD mice. Liraglutide reversed these changes, lowering α-SMA, FN, COL1A, TIMP1, TGF-β, and pSMAD3/SMAD3 expression while increasing MMP9 expression. Conclusion ·Liraglutide ameliorates liver injury, lipid deposition, and fibrosis in NAFLD mice, through modulation of the TGF-β/SMAD3 pathway and regulating fibrosis-associated protein expression.
1 | 中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018更新版)[J]. 中华肝脏病杂志, 2018, 26(3): 195-203. |
National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association, Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: a 2018 update[J]. Chinese Journal of Hepatology, 2018, 26(3): 195-203. | |
2 | JUANOLA O, MARTíNEZ-LóPEZ S, FRANCéS R, et al. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors[J]. Int J Environ Res Public Health, 2021, 18(10): 5227. |
3 | DAY C P, JAMES O F W. Steatohepatitis: a tale of two "hits"?[J]. Gastroenterology, 1998, 114(4): 842-845. |
4 | WYNN T A, RAMALINGAM T R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease[J]. Nat Med, 2012, 18(7): 1028-1040. |
5 | 中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 中华肝脏病杂志, 2024, 32(5): 418-434. |
Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of metabolic dysfunction-associated (non-alcoholic) fatty liver disease (version 2024)[J]. Chinese Journal of Hepatology, 2024, 32(5): 418-434. | |
6 | KEAM S J. Resmetirom: first approval[J]. Drugs, 2024, 84(6): 729-735. |
7 | SANYAL A J, BEDOSSA P, FRAESSDORF M, et al. A phase 2 randomized trial of survodutide in MASH and fibrosis[J]. N Engl J Med, 2024, 391(4): 311-319. |
8 | MüLLER T D, FINAN B, BLOOM S R, et al. Glucagon-like peptide 1 (GLP-1)[J]. Mol Metab, 2019, 30: 72-130. |
9 | 中华医学会内分泌学分会, 中华医学会糖尿病学分会. 胰高糖素样肽-1(GLP-1)受体激动剂用于治疗2型糖尿病的临床专家共识[J]. 中华内科杂志, 2020, 59(11): 836-846. |
Chinese Society of Endocrinology, Chinese Diabetes Society. Consensus recommendations on utilizing glucagon-like peptide-1 (GLP-1) receptor agonists in the treatment of type 2 diabetes mellitus[J]. Chinese Journal of Internal Medicine, 2020, 59(11): 836-846. | |
10 | ARMSTRONG M J, GAUNT P, AITHAL G P, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study[J]. Lancet, 2016, 387(10019): 679-690. |
11 | SOMM E, MONTANDON S A, LOIZIDES-MANGOLD U, et al. The GLP-1R agonist liraglutide limits hepatic lipotoxicity and inflammatory response in mice fed a methionine-choline deficient diet[J]. Transl Res, 2021, 227: 75-88. |
12 | DELLA PEPA G, PATRíCIO B G, CARLI F, et al. GLP-1 receptor agonist treatment improves fasting and postprandial lipidomic profiles independently of diabetes and weight loss[J]. Diabetes, 2024, 73(10): 1605-1614. |
13 | SHARMA S, MELLS J E, FU P P, et al. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy[J]. PLoS One, 2011, 6(9): e25269. |
14 | LI Y K, MA D X, WANG Z M, et al. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis[J]. Pharmacol Res, 2018, 131: 102-111. |
15 | 吴佳晋, 钟晨, 李大伟, 等. 甲基转移酶3调控pri-miR-21甲基化修饰在糖尿病肾病肾脏纤维化中的作用[J]. 上海交通大学学报(医学版), 2023, 43(1): 1-7. |
WU J J, ZHONG C, LI D W, et al. Role of methyltransferase like 3 regulating pri-miR-21 methylation in renal fibrosis of diabetes nephropathy[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(1): 1-7. | |
16 | 康建华, 李明杰, 栾培培, 等. 西方饮食联合小剂量四氯化碳构建非酒精性脂肪性肝炎小鼠模型研究[J]. 上海交通大学学报(医学版), 2020, 40(5): 590-597. |
KANG J H, LI M J, LUAN P P, et al. Establishment of non-alcoholic steatohepatitis mouse model induced by Western diet combined with low-dose carbon tetrachloride[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2020, 40(5): 590-597. | |
17 | KLEINER D E, BRUNT E M, VAN NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. |
18 | PONTES-DA-SILVA R M, DE SOUZA MARINHO T, DE MACEDO CARDOSO L E, et al. Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP-1 receptor agonist[J]. Int J Obes (Lond), 2022, 46(1): 21-29. |
19 | ZHOU R, LIN C M, CHENG Y Z, et al. Liraglutide alleviates hepatic steatosis and liver injury in T2MD rats via a GLP-1R dependent AMPK pathway[J]. Front Pharmacol, 2021, 11: 600175. |
20 | ZHOU J Y, POUDEL A, WELCHKO R, et al. Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways[J]. Eur J Pharmacol, 2019, 861: 172594. |
21 | BAO Y L, WANG L, PAN H T, et al. Animal and organoid models of liver fibrosis[J]. Front Physiol, 2021, 12: 666138. |
22 | 张琪娟, 李继斌, 肖晓秋, 等. 蛋氨酸和胆碱缺乏饮食诱导非酒精性脂肪肝炎的作用及性别差异[J]. 上海交通大学学报(医学版), 2014, 34(1): 30-35, 47. |
ZHANG Q J, LI J B, XIAO X Q, et al. Gender difference and effects in methionine and choline deficient diets-induced non-alcoholic steatohepatitis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2014, 34(1): 30-35, 47. | |
23 | WU Y R, SHI X Y, MA C Y, et al. Liraglutide improves lipid metabolism by enhancing cholesterol efflux associated with ABCA1 and ERK1/2 pathway[J]. Cardiovasc Diabetol, 2019, 18(1): 146. |
24 | 中华医学会肝病学分会, 中华医学会消化病学分会, 中华医学会感染病学分会. 肝纤维化诊断及治疗共识(2019年)[J]. 中华肝脏病杂志, 2019, 27(9): 657-667. |
Chinese Society of Hepatology Chinese Medical Association, Chinese Society of Gastroenterology Chinese Medical Association, Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis in 2019[J]. Chinese Journal of Hepatology, 2019, 27(9): 657-667. | |
25 | HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36(7): 1439-1455. |
26 | ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J]. Cells, 2020, 9(4): 875. |
27 | LIU X Y, LIU R X, HOU F, et al. Fibronectin expression is critical for liver fibrogenesis in vivo and in vitro[J]. Mol Med Rep, 2016, 14(4): 3669-3675. |
28 | SOTTILE J, HOCKING D C. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions[J]. Mol Biol Cell, 2002, 13(10): 3546-3559. |
29 | MENG X M, NIKOLIC-PATERSON D J, LAN H Y. TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338. |
30 | TSUCHIDA T, FRIEDMAN S L. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. |
31 | TRIVEDI P, WANG S, FRIEDMAN S L. The power of plasticity-metabolic regulation of hepatic stellate cells[J]. Cell Metab, 2021, 33(2): 242-257. |
32 | ONG C H, THAM C L, HARITH H H, et al. TGF-β-induced fibrosis: a review on the underlying mechanism and potential therapeutic strategies[J]. Eur J Pharmacol, 2021, 911: 174510. |
33 | CHILVERY S, BANSOD S, SAIFI M A, et al. Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways[J]. Int Immunopharmacol, 2020, 88: 106909. |
34 | WANG Y L, JIAO L K, QIANG C X, et al. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms[J]. Biomed Pharmacother, 2024, 171: 116116. |
35 | MURPHY F R, ISSA R, ZHOU X Y, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis[J]. J Biol Chem, 2002, 277(13): 11069-11076. |
36 | ZHANG J L, YANG A H, WU Y, et al. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats[J]. Biomed Pharmacother, 2018, 97: 1586-1594. |
/
〈 |
|
〉 |