收稿日期: 2024-09-18
录用日期: 2024-12-26
网络出版日期: 2025-04-28
基金资助
2023年西藏民族大学科研项目(23MDY01);西藏自治区自然科学基金[XZ2019ZR G-37(z)];2024年西藏民族大学研究生科研创新与实践项目(Y2024010)
Effect of salidroside on the immune function of BCG-infected macrophages
Received date: 2024-09-18
Accepted date: 2024-12-26
Online published: 2025-04-28
Supported by
Xizang Minzu University Research Project 2023(23MDY01);Natural Science Foundation of Xizang Autonomous Region [XZ2019ZR G-37(z)];Xizang Minzu University Postgraduate Research Innovation and Practice Programme 2024(Y2024010)
目的·研究红景天苷(salidroside,SAL)对卡介苗(Bacillus Calmette‑Guérin,BCG)感染巨噬细胞免疫功能的影响。方法·使用BCG感染RAW264.7小鼠巨噬细胞建立感染模型,实验分组为空白对照组(BCG组)、红景天苷组(SAL+BCG组)、异烟肼(isoniazid,INH)组(INH+BCG组)以及红景天苷+异烟肼组(SAL+INH+BCG组)。用MTT比色法检测SAL和INH对RAW264.7细胞增殖的影响,筛选出SAL和INH实验浓度。建立感染BCG的巨噬细胞模型后,用SAL进行预处理,通过细菌铺板计数及流式细胞术检测胞内细菌存活率,酶联免疫吸附法(enzyme-linked immunosorbent assay,ELISA)检测各细胞培养组细胞上清中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、干扰素-γ(interferon-γ,IFN-γ)、白介素-6(interleukin-6,IL-6)及IL-10细胞因子的水平;流式细胞术检测各组细胞的凋亡水平。结果·筛选出SAL用药浓度为800 μmol/L,INH用药浓度为10 μmol/L。与BCG组相比,SAL预处理36h作用效果最佳,给药组巨噬细胞内BCG生长均受抑制;SAL与INH联用对BCG胞内存活的抑制作用效果明显,差异具有统计学意义。与BCG组相比,SAL使BCG感染的巨噬细胞TNF-α、IFN-γ、IL-6和IL-10的分泌水平降低但无显著性差异,然而SAL与INH联合应用使细胞上清中TNF-α、IL-6和IL-10的含量显著降低(均P<0.05)。与BCG组比较,在感染早期SAL和INH能够显著降低BCG感染的RAW264.7细胞的凋亡水平(P=0.008,P=0.032),在感染后期SAL与INH联合应用能够显著增强BCG感染的RAW264.7细胞的凋亡水平(P=0.001)。结论·红景天苷在感染BCG的巨噬细胞中可以通过改善巨噬细胞免疫功能,抑制胞内细菌存活,减轻BCG感染导致的炎症反应,从而发挥其宿主抗分枝杆菌作用。
倪书奕 , 姜钊 , 汪中涛 , 何树梅 . 红景天苷对卡介苗感染的巨噬细胞免疫功能的影响[J]. 上海交通大学学报(医学版), 2025 , 45(4) : 426 -433 . DOI: 10.3969/j.issn.1674-8115.2025.04.004
Objective ·To Investigate the effects of salidroside (SAL) on the immune response of macrophages infected with BCG. Methods ·RAW264.7 mouse macrophages were infected with BCG, and the experiments were divided into blank control (BCG), salidroside (SAL+BCG), isoniazid (INH+BCG), and salidroside+isoniazid (SAL+INH+BCG) groups. The effects of SAL and INH on the proliferation of RAW264.7 cells were detected by MTT colorimetric assay, and the experimental concentrations of SAL and INH were screened. After the establishment of the BCG-infected macrophage model, intracellular bacterial survival was detected by bacterial plate count and flow cytometry following salidroside pretreatment. The levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6) , and interleukin-10 (IL-10) in the culture supernatants were measured by enzyme-linked immunosorbent assay, and apoptosis levels were assessed by flow cytometry. Results ·SAL at a concentration of 800 μmol/L and INH at 10 μmol/L were selected for subsequent experiments. Compared with the BCG group, SAL pretreatment for 36 h had the best effect, and the growth of BCG in macrophages in the administered group was inhibited. The inhibitory effect of the combined application of SAL and INH was obvious and statistically significant. Compared with the BCG group, SAL alone led to decreased secretion of TNF-α, IFN-γ, IL-6, and IL-10, although the differences were not statistically significant. However, the combination of SAL and INH caused a significant decrease in the levels of TNF-α, IL-6 and IL-10 in the supernatants of the cells (all P<0.05). Compared with the BCG group, in the early stage of the infection, SAL and INH were able to significantly reduce the apoptotic levels of BCG-infected RAW264.7 cells (P=0.008, P=0.032), and the combined application of SAL and INH significantly enhanced the apoptosis levels of BCG-infected RAW264.7 cells in the late stage of infection (P=0.001). Conclusion ·In BCG-infected macrophages, SAL can exhibit antimycobacterial effects on the host by enhancing macrophage immune function, suppressing intracellular bacterial survival, and concurrently mitigating the inflammatory response elicited by BCG infection.
1 | World Health Organization. Global Tuberculosis Report 2024[EB/OL]. (2024-10-29)[2025-03-14]. https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024. |
2 | AHMAD F, RANI A, ALAM A, et al. Macrophage: a cell with many faces and functions in tuberculosis[J]. Front Immunol, 2022, 13: 747799. |
3 | FLYNN J L, CHAN J. Immune cell interactions in tuberculosis[J]. Cell, 2022, 185(25): 4682-4702. |
4 | 宇妥·元丹贡布. 四部医典[M]. 上海: 上海科学技术出版社, 1987. |
YUTHOK Y G. The four medical canons [M]. Shanghai: Shanghai Science and Technology publishers, 1987. | |
5 | 宗玉英, 欧阳嘉慧, 陈超扬, 等. 常用中藏药体外抗结核分枝杆菌的筛选实验[J]. 中国中药杂志, 2008,33(24): 2973-2980. |
ZONG Y Y, OUYANG J H, CHEN C Y, et al. Screening experiments of commonly used Chinese and Tibetan medicines against Mycobacterium tuberculosis in vitro[J]. China Journal of Chinese Materia Medica, 2008,33(24): 2973-2980. | |
6 | 刚永桂. 红景天胶囊辅助治疗初治肺结核的近期疗效观察[J].青海医药杂志, 2009, 39(3): 18-20. |
GANG Y G. Observations on the recent efficacy of Rhodiola rosea capsules in the adjuvant treatment of primary pulmonary tuberculosis[J]. Qinghai Medical Journal, 2009, 39(3): 18-20. | |
7 | MAGANI S K J, MUPPARTHI S D, GOLLAPALLI B P, et al. Salidroside - can it be a multifunctional drug?[J]. Curr Drug Metab, 2020, 21(7): 512-524. |
8 | ZHANG X, HE D, JIA J L, et al. Erythropoietin mediates re-programming of endotoxin-tolerant macrophages through PI3K/AKT signaling and protects mice against secondary infection[J]. Front Immunol, 2022, 13: 938944. |
9 | 叶莎莎, 曾耀英, 尹乐乐. 红景天苷对小鼠腹腔巨噬细胞体外增殖、凋亡、吞噬、ROS和NO产生的影响[J]. 细胞与分子免疫学杂志, 2011, 27(3): 237-241. |
YE S S, ZENG Y Y, YIN L L. Effects of salidroside on proliferation, apoptosis, phagocytosis, ROS and NO production of murine peritoneal macrophages in vitro[J]. Chinese Journal of Cellular and Molecular Immunology, 2011,27(3): 237-241. | |
10 | 陆宇, 朱慧. 抗结核药治疗药物监测临床应用专家共识[J]. 中国防痨杂志, 2021, 43(9): 867-873. |
LU Y, ZHU H. Expert consensus on the therapeutic drug monitoring of anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 867-873. | |
11 | ANTHWAL D, GUPTA R K, BHALLA M, et al. Direct detection of rifampin and isoniazid resistance in sputum samples from tuberculosis patients by high-resolution melt curve analysis[J]. J Clin Microbiol, 2017, 55(6): 1755-1766. |
12 | RANKINE-WILSON L I, SHAPIRA T, SAO EMANI C, et al. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis[J]. Microbiology (Reading), 2021, 167(4): 001041. |
13 | KRISHNAN V, NATH S, NAIR P, et al. Mycobacterium tuberculosis and its clever approaches to escape the deadly macrophage[J]. World J Microbiol Biotechnol, 2023, 39(11): 300. |
14 | LIU Z H, CHEN L X, XIONG D F, et al. Salidroside affects the Th17/Treg cell balance in aplastic anemia via the STAT3/HIF-1α/RORγt pathway[J]. Redox Rep, 2023, 28(1): 2225868. |
15 | HE S M, FAN H Y, SUN B, et al. Tibetan medicine salidroside improves host anti-mycobacterial response by boosting inflammatory cytokine production in zebrafish[J]. Front Pharmacol, 2022, 13: 936295. |
16 | POLADIAN N, ORUJYAN D, NARINYAN W, et al. Role of NF-κB during Mycobacterium tuberculosis infection[J]. Int J Mol Sci, 2023, 24(2): 1772. |
17 | MENG L L, LIAO X M, WANG Y Y, et al. Pharmacologic therapies of ARDS: from natural herb to nanomedicine[J]. Front Pharmacol, 2022, 13: 930593. |
18 | 王慧莲, 展俊平, 苗喜云, 等. 红景天苷通过JAK2/STAT3信号通路调控线粒体影响Raw 264.7细胞炎症[J]. 中药材, 2022,45(2): 432-436. |
WANG H L, ZHAN J P, MIAO X Y, et al. Effect of salidroside on mitochondria in Raw 264.7 inflammation cells byJAK2/STAT3 signaling pathway[J]. Journal of Chinese Medicinal Materials, 2022,45(2): 432-436. | |
19 | NISA A, KIPPER F C, PANIGRAHY D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection[J]. Am J Physiol Cell Physiol, 2022, 323(5): C1444-C1474. |
20 | AI Y W, MENG Y T, YAN B, et al. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death[J]. Mol Cell, 2024, 84(1): 170-179. |
/
〈 |
|
〉 |