Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (2): 138-149.doi: 10.3969/j.issn.1674-8115.2025.02.002
• Basic research • Previous Articles
ZOU Peichen1(), LIU Hongyu2, AIHEMAITI· Ayinazhaer1, ZHU Liang1, TANG Yabin1(
), LEI Huimin1(
)
Received:
2024-07-09
Accepted:
2024-10-23
Online:
2025-02-28
Published:
2025-02-28
Contact:
TANG Yabin, LEI Huimin
E-mail:peichenzou1997@163.com;leonyabin2018@shsmu.edu.cn;leihuimin02@163.com
Supported by:
CLC Number:
ZOU Peichen, LIU Hongyu, AIHEMAITI· Ayinazhaer, ZHU Liang, TANG Yabin, LEI Huimin. Metabolic profiling of lung cancer cells with acquired resistance to sotorasib[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 138-149.
Time/min | Flow rate/ (mL·min-1) | Mobile phase A/% | Mobile phase B/% |
---|---|---|---|
0 | 0.25 | 10 | 90 |
1.5 | 0.25 | 10 | 90 |
20 | 0.25 | 60 | 40 |
25 | 0.25 | 60 | 40 |
25.01 | 0.25 | 10 | 90 |
33 | 0.25 | 10 | 90 |
Tab 1 Gradient elution program for H2122-SR and H2122 cells
Time/min | Flow rate/ (mL·min-1) | Mobile phase A/% | Mobile phase B/% |
---|---|---|---|
0 | 0.25 | 10 | 90 |
1.5 | 0.25 | 10 | 90 |
20 | 0.25 | 60 | 40 |
25 | 0.25 | 60 | 40 |
25.01 | 0.25 | 10 | 90 |
33 | 0.25 | 10 | 90 |
Time/min | Flow rate/ (mL·min-1) | Mobile phase A/% | Mobile phase B/% |
---|---|---|---|
0 | 0.5 | 5 | 95 |
0.5 | 0.5 | 5 | 95 |
7 | 0.5 | 35 | 65 |
8 | 0.5 | 60 | 40 |
9 | 0.5 | 60 | 40 |
9.01 | 0.5 | 5 | 95 |
12 | 0.5 | 5 | 95 |
Tab 2 Gradient elution program for H358-SR and H358 cells
Time/min | Flow rate/ (mL·min-1) | Mobile phase A/% | Mobile phase B/% |
---|---|---|---|
0 | 0.5 | 5 | 95 |
0.5 | 0.5 | 5 | 95 |
7 | 0.5 | 35 | 65 |
8 | 0.5 | 60 | 40 |
9 | 0.5 | 60 | 40 |
9.01 | 0.5 | 5 | 95 |
12 | 0.5 | 5 | 95 |
No. | Name | VIP | FC (SR/Par) | P value | Score |
---|---|---|---|---|---|
1 | Uridine | 4.17 | 0.005 | 9.16×10-6 | 94 |
2 | Xanthylic acid | 3.02 | 25.748 | 1.19×10-5 | 96 |
3 | Indole-3-carboxylic acid | 2.80 | 18.718 | 7.79×10-8 | 100 |
4 | Nicotinic acid | 2.77 | 18.143 | 2.04×10-8 | 98 |
5 | Xanthosine | 2.42 | 8.841 | 2.17×10-6 | 93 |
6 | Xanthine | 2.29 | 7.136 | 2.48×10-6 | 99 |
7 | N-methylnicotinamide | 2.20 | 0.161 | 3.94×10-9 | 99 |
8 | Hypoxanthine | 2.14 | 5.898 | 3.33×10-6 | 99 |
9 | Trigonelline | 2.06 | 5.809 | 3.08×10-5 | 90 |
10 | Galactonic acid | 2.04 | 0.451 | 1.74×10-4 | 90 |
Tab 3 Top 10 differential metabolites in VIP ranking between H2122-SR and H2122 cells
No. | Name | VIP | FC (SR/Par) | P value | Score |
---|---|---|---|---|---|
1 | Uridine | 4.17 | 0.005 | 9.16×10-6 | 94 |
2 | Xanthylic acid | 3.02 | 25.748 | 1.19×10-5 | 96 |
3 | Indole-3-carboxylic acid | 2.80 | 18.718 | 7.79×10-8 | 100 |
4 | Nicotinic acid | 2.77 | 18.143 | 2.04×10-8 | 98 |
5 | Xanthosine | 2.42 | 8.841 | 2.17×10-6 | 93 |
6 | Xanthine | 2.29 | 7.136 | 2.48×10-6 | 99 |
7 | N-methylnicotinamide | 2.20 | 0.161 | 3.94×10-9 | 99 |
8 | Hypoxanthine | 2.14 | 5.898 | 3.33×10-6 | 99 |
9 | Trigonelline | 2.06 | 5.809 | 3.08×10-5 | 90 |
10 | Galactonic acid | 2.04 | 0.451 | 1.74×10-4 | 90 |
No. | Name | VIP | FC (SR/Par) | P value | Score |
---|---|---|---|---|---|
1 | Glutathione | 2.31 | 38.656 | 3.43×10-5 | 92 |
2 | Xanthosine | 2.25 | 31.638 | 4.47×10-7 | 85 |
3 | 2-Ketoglutaric acid | 2.21 | 25.561 | 1.64×10-4 | 99 |
4 | Carboxyethyl lysine | 2.11 | 38.608 | 3.73×10-4 | 90 |
5 | Thymidine | 2.10 | 0.036 | 1.05×10-4 | 85 |
6 | Purine | 2.05 | 18.272 | 3.43×10-5 | 90 |
7 | Riboflavin | 1.99 | 15.114 | 1.01×10-6 | 92 |
8 | 3-Indolylacrylic acid | 1.98 | 45.888 | 1.38×10-4 | 85 |
9 | Indole-3-pyruvic acid | 1.82 | 0.439 | 5.32×10-5 | 85 |
10 | Dihydrouracil | 1.79 | 15.319 | 6.22×10-7 | 100 |
Tab 4 Top 10 differential metabolites in VIP ranking between H358-SR and H358 cells
No. | Name | VIP | FC (SR/Par) | P value | Score |
---|---|---|---|---|---|
1 | Glutathione | 2.31 | 38.656 | 3.43×10-5 | 92 |
2 | Xanthosine | 2.25 | 31.638 | 4.47×10-7 | 85 |
3 | 2-Ketoglutaric acid | 2.21 | 25.561 | 1.64×10-4 | 99 |
4 | Carboxyethyl lysine | 2.11 | 38.608 | 3.73×10-4 | 90 |
5 | Thymidine | 2.10 | 0.036 | 1.05×10-4 | 85 |
6 | Purine | 2.05 | 18.272 | 3.43×10-5 | 90 |
7 | Riboflavin | 1.99 | 15.114 | 1.01×10-6 | 92 |
8 | 3-Indolylacrylic acid | 1.98 | 45.888 | 1.38×10-4 | 85 |
9 | Indole-3-pyruvic acid | 1.82 | 0.439 | 5.32×10-5 | 85 |
10 | Dihydrouracil | 1.79 | 15.319 | 6.22×10-7 | 100 |
1 | BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. |
2 | RYAN M B, CORCORAN R B. Therapeutic strategies to target RAS-mutant cancers[J]. Nat Rev Clin Oncol, 2018, 15(11): 709-720. |
3 | MOORE A R, ROSENBERG S C, MCCORMICK F, et al. RAS-targeted therapies: is the undruggable drugged?[J]. Nat Rev Drug Discov, 2020, 19(8): 533-552. |
4 | JUDD J, ABDEL KARIM N, KHAN H, et al. Characterization of KRAS mutation subtypes in non-small cell lung cancer[J]. Mol Cancer Ther, 2021, 20(12): 2577-2584. |
5 | ZHU C X, GUAN X Q, ZHANG X N, et al. Targeting KRAS mutant cancers: from druggable therapy to drug resistance[J]. Mol Cancer, 2022, 21(1): 159. |
6 | SINGHAL A, LI B T, O'REILLY E M. Targeting KRAS in cancer[J]. Nat Med, 2024, 30(4): 969-983. |
7 | ZHANG J M, ZHANG J H, LIU Q, et al. Resistance looms for KRAS G12C inhibitors and rational tackling strategies[J]. Pharmacol Ther, 2022, 229: 108050. |
8 | YAEGER R, MEZZADRA R, SINOPOLI J, et al. Molecular characterization of acquired resistance to KRASG12C-EGFR inhibition in colorectal cancer[J]. Cancer Discov, 2023, 13(1): 41-55. |
9 | ZHAO Y L, MURCIANO-GOROFF Y R, XUE J Y, et al. Diverse alterations associated with resistance to KRAS(G12C) inhibition[J]. Nature, 2021, 599(7886): 679-683. |
10 | 唐亚斌. 嘌呤代谢重编程ENPP1依赖机制在肺癌EGFR-TKI获得性耐药中的作用[D]. 上海: 上海交通大学, 2020. |
TANG Y B. ENPP1-dependent purine metabolic reprogramming mechanism of EGFR-TKI acquired resistance in lung cancer[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
11 | RITCHIE M D, HOLZINGER E R, LI R W, et al. Methods of integrating data to uncover genotype-phenotype interactions[J]. Nat Rev Genet, 2015, 16(2): 85-97. |
12 | ORTMAYR K, DUBUIS S, ZAMPIERI M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism[J]. Nat Commun, 2019, 10(1): 1841. |
13 | VANDE VOORDE J, STEVEN R T, NAJUMUDEEN A K, et al. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target[J]. Nat Metab, 2023, 5(8): 1303-1318. |
14 | WANG Z Y, ZHU H Y, XIONG W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations[J]. Sci Bull, 2023, 68(19): 2268-2284. |
15 | HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. |
16 | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
17 | PANG Z Q, LU Y, ZHOU G Y, et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation[J]. Nucleic Acids Res, 2024, 52(W1): W398-W406. |
18 | JIMÉNEZ-CARVELO A M, MARTÍN-TORRES S, ORTEGA-GAVILÁN F, et al. PLS-DA vs sparse PLS-DA in food traceability. A case study: authentication of avocado samples[J]. Talanta, 2021, 224: 121904. |
19 | SHAKEEL M, MAJEED M I, NAWAZ H, et al. Surface-enhanced Raman spectroscopy for the characterization of pellets of biofilm forming bacterial strains of Staphylococcus epidermidis[J]. Photodiagnosis Photodyn Ther, 2022, 40: 103145. |
20 | LIN Z Y, LI J W, ZHANG J, et al. Metabolic reprogramming driven by IGF2BP3 promotes acquired resistance to EGFR inhibitors in non-small cell lung cancer[J]. Cancer Res, 2023, 83(13): 2187-2207. |
21 | NIE M, CHEN N, PANG H H, et al. Targeting acetylcholine signaling modulates persistent drug tolerance in EGFR-mutant lung cancer and impedes tumor relapse[J]. J Clin Invest, 2022, 132(20): e160152. |
22 | SHI D D, SAVANI M R, ABDULLAH K G, et al. Emerging roles of nucleotide metabolism in cancer[J]. Trends Cancer, 2023, 9(8): 624-635. |
23 | MULLEN N J, SINGH P K. Nucleotide metabolism: a pan-cancer metabolic dependency[J]. Nat Rev Cancer, 2023, 23(5): 275-294. |
24 | SHUKLA S K, PUROHIT V, MEHLA K, et al. MUC1 and HIF-1α signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer[J]. Cancer Cell, 2017, 32(3): 392. |
25 | HUANG Y T, CHAN S, CHEN S N, et al. Wnt/β-catenin signalling activates IMPDH2-mediated purine metabolism to facilitate oxaliplatin resistance by inhibiting caspase-dependent apoptosis in colorectal cancer[J]. J Transl Med, 2024, 22(1): 133. |
26 | ZHOU W H, YAO Y Y, SCOTT A J, et al. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma[J]. Nat Commun, 2020, 11(1): 3811. |
27 | BEN-SAHRA I, HOXHAJ G, RICOULT S J H, et al. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle[J]. Science, 2016, 351(6274): 728-733. |
28 | HUANG F, NI M, CHALISHAZAR M D, et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers[J]. Cell Metab, 2018, 28(3): 369-382.e5. |
29 | TORRENCE M E, MACARTHUR M R, HOSIOS A M, et al. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals[J]. eLife, 2021, 10: e63326. |
30 | ALI E S, SAHU U, VILLA E, et al. ERK2 phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis[J]. Mol Cell, 2020, 78(6): 1178-1191.e6. |
31 | XIAO Y, YU T J, XU Y, et al. Emerging therapies in cancer metabolism[J]. Cell Metab, 2023, 35(8): 1283-1303. |
32 | LABRIE M, BRUGGE J S, MILLS G B, et al. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer[J]. Nat Rev Cancer, 2022, 22(6): 323-339. |
33 | WU Q, BA-ALAWI W, DEBLOIS G, et al. GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer[J]. Nat Commun, 2020, 11(1): 4205. |
34 | LIU H, LYU H, JIANG G M, et al. ALKBH5-mediated m6A demethylation of GLUT4 mRNA promotes glycolysis and resistance to HER2-targeted therapy in breast cancer[J]. Cancer Res, 2022, 82(21): 3974-3986. |
[1] | SUN Chenwei, HAI Wangxi, QU Qian, XI Yun. [18F]F-FMISO and [18F]F-FLT PET/CT dual-nuclide imaging for in vivo prediction of drug resistance in pancreatic cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 60-68. |
[2] | ZHANG Yesheng, YANG Yijing, HUANG Yiwen, SHI Longyu, WANG Manyuan, CHEN Sisi. Research progress in immune cells regulating drug resistance of tumor cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 830-838. |
[3] | ZHU Mingyang, XU Yuanyuan, REN Jianghao, HUANG Jiazheng, LI Ruonan, TAN Qiang. Review of sublobar resection for lung adenocarcinoma with ground-glass presence [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 922-927. |
[4] | WANG Mengting, CHEN Yinan, XUANYUAN Xinyang, YUAN Haihua. Construction and experimental validation of mouse PDX model by malignant pleural effusion-derived tumor cells from lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 435-443. |
[5] | LIU Chenxi, HAN Lin, YANG Yi, ZHOU Han, LIU Yayun, SHENG Deqiao. GPR87 promotes invasion and migration through the RHO/ROCK pathway in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1514-1525. |
[6] | CUI Zhiyan, CHEN Yao, TAO Yue, SHEN Shuhong, LI Hui. Effects of PRPS1 I72 mutations on drug resistance in acute lymphoblastic leukemia and its mechanisms [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 977-987. |
[7] | HUANG Huayan, XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun. Advances in immunotherapy of advanced non-small cell lung cancer with EGFR mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 611-618. |
[8] | ZHAO Zhuoming, LIU Zhenhao, LU Manman, ZHANG Yu, XU Linfeng, XIE Lu. Analysis of tumor-related features of non-small cell lung cancer based on TCR repertoire workflow [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1520-1528. |
[9] | ZHAO Fumao, PENG Mei, PENG Xiaolu, SHU Weiwei, PENG Li. Changes in drug resistance of Acinetobacter baumannii during the change of meropenem concentration in the environment and its mechanism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(11): 1396-1407. |
[10] | ZHAO Keke, JIANG Beibei, ZHANG Lu, WANG Lingyun, ZHANG Yaping, XIE Xueqian. Feasibility of ultra-low-dose noncontrast CT based on deep learning image reconstruction to evaluate chest lesions [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1062-1069. |
[11] | LIAO Yahui, LIU Liyun, ZHU Hongrui, LIN Houwen, YAN Jizhou, SUN Fan. Marine sponge-derived smenospongine overcomes resistance of cisplatin via inhibiting EGFR-Akt-ABCG2 pathway in NSCLC cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 997-1007. |
[12] | LIU Ziyang, WANG Xiaowen, CHEN Li. lncRNA GK-IT1 influences the carcinogenesis of non-small cell lung cancer cells through regulating aldolase A [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 591-601. |
[13] | LU Wenqing, MENG Zhouwenli, YU Yongfeng, LU Shun. Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 535-544. |
[14] | HU Chanchan, FAN Yi, XU Yuan, HU Zhijian, ZENG Yiming. Lipid metabolism and lung cancer: emerging roles in occurrence, progression, diagnosis and treatment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1766-1771. |
[15] | LIAO Hongjian, CAO Yuchao, DU Yonghong. Anticancer effect of drug-loaded DNA nanoflowers on mouse lung cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(11): 1542-1549. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||