| [1] |
OLIVER D L, CANT N B, FAY R R, et al. The mammalian auditory pathways: synaptic organization and microcircuits[M]. Cham: Springer, 2018.
|
| [2] |
PICKLES J O. Auditory pathways: anatomy and physiology[J]. Handb Clin Neurol, 2015, 129: 3-25.
|
| [3] |
PETITPRÉ C, WU H H, SHARMA A, et al. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system[J]. Nat Commun, 2018, 9(1): 3691.
|
| [4] |
SHERRILL H E, JEAN P, DRIVER E C, et al. Pou4f1 defines a subgroup of type Ⅰ spiral ganglion neurons and is necessary for normal inner hair cell presynaptic Ca2+ signaling[J]. J Neurosci, 2019, 39(27): 5284-5298.
|
| [5] |
FRANK M M, SITKO A A, SUTHAKAR K, et al. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system[J]. eLife, 2023, 12: e83855.
|
| [6] |
BACHMAN J L, KITCHER S R, VATTINO L G, et al. GABAergic synapses between auditory efferent neurons and type Ⅱ spiral ganglion afferent neurons in the mouse cochlea[J]. Proc Natl Acad Sci USA, 2025, 122(8): e2409921122.
|
| [7] |
NIEMAN C L, OH E S. Hearing loss[J]. Ann Intern Med, 2020, 173(11): ITC81-ITC96.
|
| [8] |
HAILE L M, ORJI A U, REAVIS K M, et al. Hearing loss prevalence, years lived with disability, and hearing aid use in the United States from 1990 to 2019: findings from the Global Burden of Disease Study[J]. Ear Hear, 2024, 45(1): 257-267.
|
| [9] |
ZENG F G. Celebrating the one millionth cochlear implant[J]. JASA Express Lett, 2022, 2(7): 077201.
|
| [10] |
TOULEMONDE P, RISOUD M, LEMESRE P E, et al. Evaluation of the efficacy of dexamethasone-eluting electrode array on the post-implant cochlear fibrotic reaction by three-dimensional immunofluorescence analysis in Mongolian gerbil cochlea[J]. J Clin Med, 2021, 10(15): 3315.
|
| [11] |
DU E Y, ORTEGA B K, NINOYU Y, et al. Volumetric analysis of the aging auditory pathway using high resolution magnetic resonance histology[J]. Front Aging Neurosci, 2022, 14: 1034073.
|
| [12] |
VOGL C, NEEF J, WICHMANN C. Methods for multiscale structural and functional analysis of the mammalian cochlea[J]. Mol Cell Neurosci, 2022, 120: 103720.
|
| [13] |
LI H, HELPARD L, EKEROOT J, et al. Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast imaging[J]. Sci Rep, 2021, 11(1): 4437.
|
| [14] |
HUA Y F, DING X, WANG H Y, et al. Electron microscopic reconstruction of neural circuitry in the cochlea[J]. Cell Rep, 2021, 34(1): 108551.
|
| [15] |
PERIN P, VOIGT F F, BETHGE P, et al. iDISCO+ for the study of neuroimmune architecture of the rat auditory brainstem[J]. Front Neuroanat, 2019, 13: 15.
|
| [16] |
KEPPELER D, KAMPSHOFF C A, THIRUMALAI A, et al. Multiscale photonic imaging of the native and implanted cochlea[J]. Proc Natl Acad Sci USA, 2021, 118(18): e2014472118.
|
| [17] |
URATA S, IIDA T, YAMAMOTO M, et al. Cellular cartography of the organ of Corti based on optical tissue clearing and machine learning[J]. eLife, 2019, 8: e40946.
|
| [18] |
PERIN P, ROSSETTI R, RICCI C, et al. 3D reconstruction of the clarified rat hindbrain choroid plexus[J]. Front Cell Dev Biol, 2021, 9: 692617.
|
| [19] |
MOATTI A, CAI Y H, LI C, et al. Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy[J]. Biomed Opt Express, 2020, 11(11): 6181-6196.
|
| [20] |
RAI M R, LI C, GREENBAUM A. Quantitative analysis of illumination and detection corrections in adaptive light sheet fluorescence microscopy[J]. Biomed Opt Express, 2022, 13(5): 2960-2974.
|
| [21] |
OU Z H, DUH Y S, ROMMELFANGER N J, et al. Achieving optical transparency in live animals with absorbing molecules[J]. Science, 2024, 385(6713): eadm6869.
|
| [22] |
CAI R Y, KOLABAS Z I, PAN C C, et al. Whole-mouse clearing and imaging at the cellular level with vDISCO[J]. Nat Protoc, 2023, 18(4): 1197-1242.
|
| [23] |
MAI H C, LUO J, HOEHER L, et al. Whole-body cellular mapping in mouse using standard IgG antibodies[J]. Nat Biotechnol, 2024, 42(4): 617-627.
|
| [24] |
NUDELL V, WANG Y, PANG Z Y, et al. HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies[J]. Nat Methods, 2022, 19(4): 479-485.
|
| [25] |
JING D, ZHANG S W, LUO W J, et al. Tissue clearing of both hard and soft tissue organs with the PEGASOS method[J]. Cell Res, 2018, 28(8): 803-818.
|
| [26] |
YI Y T, LI Y Q, ZHANG S W, et al. Mapping of individual sensory nerve axons from digits to spinal cord with the transparent embedding solvent system[J]. Cell Res, 2024, 34(2): 124-139.
|
| [27] |
WANG Y, YE L. TESOS: an integrated approach for uniform mesoscale imaging[J]. Cell Res, 2024, 34(2): 93-94.
|
| [28] |
WANG J, CHI F L, ZHAO H, et al. Projection from the cochlear nucleus to the peripheral vestibule in Wistar rats[J]. ORL J Otorhinolaryngol Relat Spec, 2011, 73(4): 229-236.
|
| [29] |
GARCÍA-HERNÁNDEZ S, RUBIO M E. Role of GluA4 in the acoustic and tactile startle responses[J]. Hear Res, 2022, 414: 108410.
|
| [30] |
YAO M, TUDI A, JIANG T, et al. Long-range connectome of pyramidal neurons in the sensorimotor cortex[J]. iScience, 2023, 26(4): 106316.
|