JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2022, Vol. 42 ›› Issue (2): 225-229.doi: 10.3969/j.issn.1674-8115.2022.02.014
• Review • Previous Articles
Hao WANG(), Ran WANG, Qian BA()
Received:
2021-10-09
Online:
2022-01-24
Published:
2022-01-24
Contact:
Qian BA
E-mail:shinku@sjtu.edu.cn;qba@shsmu.edu.cn
Supported by:
CLC Number:
Hao WANG, Ran WANG, Qian BA. Effects of food-borne titanium dioxide nanomaterials on digestive tract tissues and gastrointestinal microbiome: a review of recent studies[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 225-229.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.02.014
1 | PETERS R J, VAN BEMMEL G, HERRERA-RIVERA Z, et al. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles[J]. J Agric Food Chem, 2014, 62(27): 6285-6293. |
2 | CANDÁS-ZAPICO S, KUTSCHER D J, MONTES-BAYÓN M, et al. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS[J]. Talanta, 2018, 180: 309-315. |
3 | Toxicological evaluation of some food colours, emulsifiers, stabilizers, anti-caking agents and certain other substances[J]. FAO Nutr Meet Rep Ser, 1970(46A): 1-161. |
4 | Specifications for the identity and purity of food additives and their toxiclogical evaluation: some flavouring substances and non-nutritive sweetening agents. Eleventh report of the Joint FAO-WHO Expert Committee on Food Additives[J]. World Health Organ Tech Rep Ser, 1968, 383: 1-18. |
5 | EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), YOUNES M, AGGETT P, et al. Evaluation of four new studies on the potential toxicity of titanium dioxide used as a food additive (E171)[J]. EFSA J, 2018, 16(7): e05366. |
6 | WINKLER H C, NOTTER T, MEYER U, et al. Critical review of the safety assessment of titanium dioxide additives in food[J]. J Nanobiotechnology, 2018, 16(1): 51. |
7 | EFSA Panel on Food Additives and Flavourings (FAF), YOUNES M, AQUILINA G, et al. Safety assessment of titanium dioxide (E171) as a food additive[J]. EFSA J, 2021, 19(5): e06585. |
8 | PROQUIN H, RODRÍGUEZ-IBARRA C, MOONEN C G, et al. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions[J]. Mutagenesis, 2017, 32(1): 139-149. |
9 | CHEN X X, CHENG B, YANG Y X, et al. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum[J]. Small, 2013, 9(9/10): 1765-1774. |
10 | ROMPELBERG C, HERINGA M B, VAN DONKERSGOED G, et al. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population[J]. Nanotoxicology, 2016, 10(10): 1404-1414. |
11 | PETERS R J B, OOMEN A G, VAN BEMMEL G, et al. Silicon dioxide and titanium dioxide particles found in human tissues[J]. Nanotoxicology, 2020, 14(3): 420-432. |
12 | BOUWMEESTER H, VAN DER ZANDE M, JEPSON M A. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnology, 2018, 10(1): e1481. |
13 | SHI H, MAGAYE R, CASTRANOVA V, et al. Titanium dioxide nanoparticles: a review of current toxicological data[J]. Part Fibre Toxicol, 2013, 10: 15. |
14 | TEUBL B J, LEITINGER G, SCHNEIDER M, et al. The buccal mucosa as a route for TiO2 nanoparticle uptake[J]. Nanotoxicology, 2015, 9(2): 253-261. |
15 | TEUBL B J, SCHIMPEL C, LEITINGER G, et al. Interactions between nano-TiO2 and the oral cavity: impact of nanomaterial surface hydrophilicity/hydrophobicity[J]. J Hazard Mater, 2015, 286: 298-305. |
16 | ZHOU H, PANDYA J K, TAN Y, et al. Role of mucin in behavior of food-grade TiO2 nanoparticles under simulated oral conditions[J]. J Agric Food Chem, 2019, 67(20): 5882-5890. |
17 | LI J, YANG S, LEI R, et al. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure[J]. Nanoscale, 2018, 10(16): 7736-7745. |
18 | DUDEFOI W, RABESONA H, RIVARD C, et al. In vitro digestion of food grade TiO2 (E171) and TiO2 nanoparticles: physicochemical characterization and impact on the activity of digestive enzymes[J]. Food Funct, 2021, 12(13): 5975-5988. |
19 | KWON D, NHO H W, YOON T H. Transmission electron microscopy and scanning transmission X-ray microscopy studies on the bioaccumulation and tissue level absorption of TiO2 nanoparticles in Daphnia magna[J]. J Nanosci Nanotechnol, 2015, 15(6): 4229-4238. |
20 | GUO Z, MARTUCCI N J, MORENO-OLIVAS F, et al. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine[J]. NanoImpact, 2017, 5: 70-82. |
21 | FAUST J J, DOUDRICK K, YANG Y, et al. Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation[J]. Cell Biol Toxicol, 2014, 30(3): 169-188. |
22 | RICHTER J W, SHULL G M, FOUNTAIN J H, et al. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster[J]. Nanotoxicology, 2018, 12(5): 390-406. |
23 | GAO Y, YE Y, WANG J, et al. Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose[J]. Nanotoxicology, 2020, 14(10): 1301-1323. |
24 | CHEN Z, HAN S, ZHENG P, et al. Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in Sprague-Dawley rats[J]. Nanoscale, 2020, 12(10): 5973-5986. |
25 | LI Q, LI T, LIU C, et al. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions[J]. Nanotoxicology, 2017, 11(9/10): 1087-1101. |
26 | ZHAO Y, TANG Y, CHEN L, et al. Restraining the TiO2 nanoparticles-induced intestinal inflammation mediated by gut microbiota in juvenile rats via ingestion of Lactobacillus rhamnosus GG[J]. Ecotoxicol Environ Saf, 2020, 206: 111393. |
27 | CHEN Z, HAN S, ZHOU D, et al. Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo[J]. Nanoscale, 2019, 11(46): 22398-22412. |
28 | PINGET G, TAN J, JANAC B, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction[J]. Front Nutr, 2019, 6: 57. |
29 | LIMAGE R, TAKO E, KOLBA N, et al. TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition in a gastrointestinal tract model[J]. Small, 2020, 16(21): e2000601. |
30 | GUM J R, BYRD J C, HICKS J W, et al. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism[J]. J Biol Chem, 1989, 264(11): 6480-6487. |
31 | KUFE D W. Mucins in cancer: function, prognosis and therapy[J]. Nat Rev Cancer, 2009, 9(12): 874-885. |
32 | YAN J, WANG D, LI K, et al. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: mechanisms related to intestinal barrier dysfunction involved by gut microbiota[J]. Environ Toxicol Pharmacol, 2020, 80: 103485. |
33 | SHAN M, GENTILE M, YEISER J R, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals[J]. Science, 2013, 342(6157): 447-453. |
34 | TADA-OIKAWA S, ICHIHARA G, FUKATSU H, et al. Titanium dioxide particle type and concentration influence the inflammatory response in Caco-2 cells[J]. Int J Mol Sci, 2016, 17(4): 576. |
35 | BLEVINS L K, CRAWFORD R B, BACH A, et al. Evaluation of immunologic and intestinal effects in rats administered an E171-containing diet, a food grade titanium dioxide (TiO2)[J]. Food Chem Toxicol, 2019, 133: 110793. |
36 | DORIER M, BÉAL D, MARIE-DESVERGNE C, et al. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress[J]. Nanotoxicology, 2017, 11(6): 751-761. |
37 | TALAMINI L, GIMONDI S, VIOLATTO M B, et al. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status[J]. Nanotoxicology, 2019, 13(8): 1087-1101. |
38 | WANI M R, MAHESHWARI N, SHADAB G. Eugenol attenuates TiO2 nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study[J]. Environ Sci Pollut Res Int, 2021, 28(18): 22664-22678. |
39 | MU W, WANG Y, HUANG C, et al. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice[J]. J Agric Food Chem, 2019, 67(33): 9382-9389. |
40 | DUDEFOI W, MONIZ K, ALLEN-VERCOE E, et al. Impact of food grade and nano-TiO2 particles on a human intestinal community[J]. Food Chem Toxicol, 2017, 106(Pt A): 242-249. |
41 | CHEN Z, ZHOU D, HAN S, et al. Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles[J]. Part Fibre Toxicol, 2019, 16(1): 48. |
42 | KOLBA N, GUO Z, OLIVAS F M, et al. Intra-amniotic administration (Gallus gallus) of TiO2, SiO2, and ZnO nanoparticles affect brush border membrane functionality and alters gut microflora populations[J]. Food Chem Toxicol, 2020, 135: 110896. |
43 | WANG X, KOLBA N, LIANG J, et al. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts[J]. Food Funct, 2019, 10(8): 4834-4843. |
44 | FRÖHLICH E E, FRÖHLICH E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota[J]. Int J Mol Sci, 2016, 17(4): 509. |
45 | ZENG M Y, INOHARA N, NUÑEZ G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut[J]. Mucosal Immunol, 2017, 10(1): 18-26. |
46 | CAO X, HAN Y, GU M, et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: gut microbiota dysbiosis, colonic inflammation, and proteome alterations[J]. Small, 2020, 16(36): e2001858. |
47 | KURTZ C C, MITCHELL S, NIELSEN K, et al. Acute high-dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice[J]. J Appl Toxicol, 2020, 40(10): 1384-1395. |
48 | BARANOWSKA-WÓJCIK E, GUSTAW K, SZWAJGIER D, et al. Four types of TiO2 reduced the growth of selected lactic acid bacteria strains[J]. Foods, 2021, 10(5): 939. |
49 | KHAN S T, SALEEM S, AHAMED M, et al. Survival of probiotic bacteria in the presence of food grade nanoparticles from chocolates: an in vitro and in vivo study[J]. Appl Microbiol Biotechnol, 2019, 103(16): 6689-6700. |
50 | LU Y C, YEH W C, OHASHI P S. LPS/TLR4 signal transduction pathway[J]. Cytokine, 2008, 42(2): 145-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||