1 |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
|
|
ZHENG R S, SUN K X, ZHANG S W, et al. Report of cancer epidemiology in China, 2015[J]. Chin J Oncol, 2019, 41(1): 19-28.
|
2 |
NUCCI D, MARINO A, REALDON S, et al. Lifestyle, WCRF/AICR recommendations, and esophageal adenocarcinoma risk: a systematic review of the literature[J]. Nutrients, 2021, 13(10): 3525.
|
3 |
ISHIHARA R, GODA K, OYAMA T. Endoscopic diagnosis and treatment of esophageal adenocarcinoma: introduction of Japan Esophageal Society classification of Barrett's esophagus[J]. J Gastroenterol, 2019, 54(1): 1-9.
|
4 |
HAMADE N, SHARMA P. Artificial intelligence in Barrett's esophagus[J]. Ther Adv Gastrointest Endosc, 2021, 14: 26317745211049964.
|
5 |
SHAHEEN N J, FALK G W, IYER P G, et al. ACG clinical guideline: diagnosis and management of Barrett's esophagus[J]. Am J Gastroenterol, 2016, 111(1): 30-50.
|
6 |
MANN R, GAJENDRAN M, PERISETTI A, et al. Advanced endoscopic imaging and interventions in GERD: an update and future directions[J]. Front Med (Lausanne), 2021, 8: 728696.
|
7 |
PAN W, LI X J, WANG W J, et al. Identification of Barrett's esophagus in endoscopic images using deep learning[J]. BMC Gastroenterol, 2021, 21(1): 479.
|
8 |
BORGLI H, THAMBAWITA V, SMEDSRUD P H, et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy[J]. Sci Data, 2020, 7(1): 283.
|
9 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[J/OL]. (2017-09-09)[2021-12-28]. http://arxiv.org/abs/1610.02357.
|
10 |
HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J/OL]. (2015-12-10)[2021-12-28]. http://arxiv.org/abs/1512.03385.
|
11 |
KOLESNIKOV A, BEYER L, ZHAI X H, et al. Big transfer (BiT): general visual representation learning[J/OL]. (2020-05-05)[2021-12-28]. http://arxiv.org/abs/1912.11370.
|
12 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[J/OL]. (2017-12-07)[2021-12-30]. http://arxiv.org/abs/1707.07012v4.
|
13 |
HONG J S, PARK B Y, PARK H. Convolutional neural network classifier for distinguishing Barrett's esophagus and neoplasia endomicroscopy images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 2892-2895.
|
14 |
DE GROOF A J, STRUYVENBERG M R, VAN DER PUTTEN J, et al. Deep-learning system detects neoplasia in patients with Barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking[J]. Gastroenterology, 2020, 158(4): 915-929.e4.
|
15 |
ALOM M Z, TAHA T M, YAKOPCIC C, et al. The history began from AlexNet: a comprehensive survey on deep learning approaches[J/OL]. (2018-09-12)[2021-12-27]. http://arxiv.org/abs/1803.01164.
|
16 |
SHIN H C, ROTH H R, GAO M C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298.
|
17 |
SAMALA R K, CHAN H P, HADJIISKI L, et al. Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets[J]. IEEE Trans Med Imaging, 2019, 38(3): 686-696.
|