
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (7): 925-930.doi: 10.3969/j.issn.1674-8115.2022.07.012
• Review • Previous Articles Next Articles
LUAN Jiayan(
), LI Peng, HAN Bangmin(
)
Received:2022-02-11
Accepted:2022-07-01
Online:2022-07-28
Published:2022-09-04
Contact:
HAN Bangmin
E-mail:suerljy@163.com;hanbm@163.com
Supported by:CLC Number:
LUAN Jiayan, LI Peng, HAN Bangmin. Role of SUMOylation in spermatogenesis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 925-930.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.07.012
| 1 | SANTIAGO J, SILVA J V, HOWL J, et al. All you need to know about sperm RNAs[J]. Hum Reprod Update, 2021, 28(1): 67-91. |
| 2 | GAO H H, WEN H, CAO C C, et al. Overexpression of microRNA-10a in germ cells causes male infertility by targeting Rad51 in mouse and human[J]. Front Physiol, 2019, 10: 765. |
| 3 | CHEN X X, ZHENG Y, LEI A M, et al. Early cleavage of preimplantation embryos is regulated by tRNAGln-TTG-derived small RNAs present in mature spermatozoa[J]. J Biol Chem, 2020, 295(32): 10885-10900. |
| 4 | TYEBJI S, HANNAN A J, TONKIN C J. Pathogenic infection in male mice changes sperm small RNA profiles and transgenerationally alters offspring behavior[J]. Cell Rep, 2020, 31(4): 107573. |
| 5 | SHARMA U. Paternal contributions to offspring health: role of sperm small RNAs in intergenerational transmission of epigenetic information[J]. Front Cell Dev Biol, 2019, 7: 215. |
| 6 | VIGODNER M. Roles of small ubiquitin-related modifiers in male reproductive function[J]. Int Rev Cell Mol Biol, 2011, 288: 227-259. |
| 7 | OKURA T, GONG L, KAMITANI T, et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin[J]. J Immunol, 1996, 157(10): 4277-4281. |
| 8 | WILSON V G. SUMO Regulation of Cellular Processes[M]. 2nd ed. Switzerland: Springer, 2017. |
| 9 | VIGODNER M. Sumoylation precedes accumulation of phosphorylated H2AX on sex chromosomes during their meiotic inactivation[J]. Chromosome Res, 2009, 17(1): 37-45. |
| 10 | FEITOSA W B, MORRIS P L. SUMOylation regulates germinal vesicle breakdown and the Akt/PKB pathway during mouse oocyte maturation[J]. Am J Physiol Cell Physiol, 2018, 315(1): C115-C121. |
| 11 | DEL PRIORE L, PIGOZZI M I. DNA organization along pachytene chromosome axes and its relationship with crossover frequencies[J]. Int J Mol Sci, 2021, 22(5): 2414. |
| 12 | SONG S H, CHIBA K, RAMASAMY R, et al. Recent advances in the genetics of testicular failure[J]. Asian J Androl, 2016, 18(3): 350-355. |
| 13 | GRAY S, COHEN P E. Control of meiotic crossovers: from double-strand break formation to designation[J]. Annu Rev Genet, 2016, 50: 175-210. |
| 14 | SHRIVASTAVA V, PEKAR M, GROSSER E, et al. SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells[J]. Reproduction, 2010, 139(6): 999-1010. |
| 15 | CHANG H M, YEH E T H. SUMO: from bench to bedside[J]. Physiol Rev, 2020, 100(4): 1599-1619. |
| 16 | RAO H P, QIAO H Y, BHATT S K, et al. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination[J]. Science, 2016, 355: 403-407. |
| 17 | VIGODNER M, ISHIKAWA T, SCHLEGEL P N, et al. SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis[J]. Am J Physiol Endocrinol Metab, 2006, 290(5): E1022-E1033. |
| 18 | PANICKER N, GE P, DAWSON V L, et al. The cell biology of Parkinson's disease[J]. J Cell Biol, 2021, 220(4): e202012095. |
| 19 | RICHARD M A, SOK P, CANON S, et al. Altered mechanisms of genital development identified through integration of DNA methylation and genomic measures in hypospadias[J]. Sci Rep, 2020, 10(1): 12715. |
| 20 | SENGUPTA A, NANDA M, TARIQ S B, et al. Sumoylation and its regulation in testicular Sertoli cells[J]. Biochem Biophys Res Commun, 2021, 580: 56-62. |
| 21 | SEELER J S, DEJEAN A. Nuclear and unclear functions of SUMO[J]. Nat Rev Mol Cell Biol, 2003, 4(9): 690-699. |
| 22 | BROWN P W, HWANG K, SCHLEGEL P N, et al. Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men[J]. Hum Reprod, 2008, 23(12): 2850-2857. |
| 23 | YANG W L, ROBICHAUX W G 3rd, MEI F C, et al. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates[J]. Sci Adv, 2022, 8(16): eabm2960. |
| 24 | SHRIVASTAVA V, MARMOR H, CHERNYAK S, et al. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins[J]. Reprod Toxicol, 2014, 43: 125-129. |
| 25 | VIGODNER M, SHRIVASTAVA V, GUTSTEIN L E, et al. Localization and identification of sumoylated proteins in human sperm: excessive sumoylation is a marker of defective spermatozoa[J]. Hum Reprod, 2013, 28(1): 210-223. |
| 26 | GONG L, KAMITANI T, FUJISE K, et al. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9[J]. J Biol Chem, 1997, 272(45): 28198-28201. |
| 27 | LA SALLE S, SUN F Y, ZHANG X D, et al. Developmental control of sumoylation pathway proteins in mouse male germ cells[J]. Dev Biol, 2008, 321(1): 227-237. |
| 28 | VIGODNER M, LUCAS B, KEMENY S, et al. Identification of sumoylated targets in proliferating mouse spermatogonia and human testicular seminomas[J]. Asian J Androl, 2020, 22(6): 569-577. |
| 29 | NACERDDINE K, LEHEMBRE F, BHAUMIK M, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice[J]. Dev Cell, 2005, 9(6): 769-779. |
| 30 | MAGALHAES J, TRESSE E, EJLERSKOV P, et al. PIAS2-mediated blockade of IFN-β signaling: a basis for sporadic Parkinson disease dementia[J]. Mol Psychiatry, 2021, 26(10): 6083-6099. |
| 31 | BEGITT A, CAVEY J, DROESCHER M, et al. On the role of STAT1 and STAT6 ADP-ribosylation in the regulation of macrophage activation[J]. Nat Commun, 2018, 9(1): 2144. |
| 32 | PAAKINAHO V, LEMPIÄINEN J K, SIGISMONDO G, et al. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites[J]. Nucleic Acids Res, 2021, 49(4): 1951-1971. |
| 33 | WANG R H, HUANG S F, FU X N, et al. The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-κB pathway[J]. Sci Rep, 2017, 7(1): 17063. |
| 34 | YAN W, SANTTI H, JÄNNE O A, et al. Expression of the E3 SUMO-1 ligases PIASx and PIAS1 during spermatogenesis in the rat[J]. Gene Expr Patterns, 2003, 3(3): 301-308. |
| 35 | SANTTI H, MIKKONEN L, ANAND A, et al. Disruption of the murine PIASx gene results in reduced testis weight[J]. J Mol Endocrinol, 2005, 34(3): 645-654. |
| 36 | SAJEEV T K, JOSHI G, ARYA P, et al. SUMO and SUMOylation pathway at the forefront of host immune response[J]. Front Cell Dev Biol, 2021, 9: 681057. |
| 37 | WEN S M, NIU Y J, HUANG H J. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian J Urol, 2020, 7(3): 203-218. |
| 38 | TAKAHASHI M, INAGUMA Y, HIAI H, et al. Developmentally regulated expression of a human "finger"-containing gene encoded by the 5' half of the ret transforming gene[J]. Mol Cell Biol, 1988, 8(4): 1853-1856. |
| 39 | ZHUANG X J, TANG W H, FENG X, et al. Trim27 interacts with Slx2, is associated with meiotic processes during spermatogenesis[J]. Cell Cycle, 2016, 15(19): 2576-2584. |
| 40 | MATSUURA T, SHIMONO Y, KAWAI K M, et al. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein[J]. Exp Cell Res, 2005, 308(1): 65-77. |
| 41 | LONG X J, ZHAO B Y, LU W B, et al. The critical roles of the SUMO-specific protease SENP3 in human diseases and clinical implications[J]. Front Physiol, 2020, 11: 558220. |
| 42 | JANSEN N S, VERTEGAAL A C O. A chain of events: regulating target proteins by SUMO polymers[J]. Trends Biochem Sci, 2021, 46(2): 113-123. |
| 43 | HAN Z J, FENG Y H, GU B H, et al. The post-translational modification, SUMOylation, and cancer (Review)[J]. Int J Oncol, 2018, 52(4): 1081-1094. |
| 44 | KUNZ K, PILLER T, MÜLLER S. SUMO-specific proteases and isopeptidases of the SENP family at a glance[J]. J Cell Sci, 2018, 131(6): jcs211904. |
| 45 | DEYRIEUX A F, WILSON V G. Sumoylation in development and differentiation[J]. Adv Exp Med Biol, 2017, 963: 197-214. |
| 46 | WU D, HUANG C J, KHAN F A, et al. SENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells[J]. Oncotarget, 2017, 8(35): 58430-58442. |
| 47 | MRUK D D, CHENG C Y. The mammalian blood-testis barrier: its biology and regulation[J]. Endocr Rev, 2015, 36(5): 564-591. |
| [1] | XIAO Shuyu, TULAMATI Aziguli, YANG Yan, ZHANG Zhigang, YANG Xiaomei, DU Chang, ZHANG Xueli. Synthesis of the serotonin derivative 5-PT and establishment of a research system for protein serotonylation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 211-221. |
| [2] | ZHANG Xinyan, LI Han, RAN Hui, SU Qing, ZHANG Hongmei. Correlation between serum SUMO1 level and hypertriglyceridemia in type 2 diabetes mellitus patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1266-1272. |
| [3] | SONG Wenting, TAO Yue, PAN Yi, MO Xi, CAO Qing. SIRT2 regulates macrophage chemotaxis by de-modifying histone H4K8 lactylation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1008-1016. |
| [4] | Yan-yun HAO, Si-hui YÜ, Jing LU, Xiang GU, Fan ZHANG, Jin-ke CHENG, Tian-shi WANG. Role of SIRT3 SUMOylation deficiency in the proliferation and chemotherapeutic sensitivity of breast cancer cells MCF7 [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1557-1563. |
| [5] | Qiang-qiang XIONG, Jun TU, Jun-ru LI, Jin-ke CHENG, Jian-hong ZUO, Ya-lan CHEN. Review of proteomic study of protein SUMOylation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(1): 89-94. |
| [6] | WANG Xiu-zhi, ZUO Yong. Inhibition effect of SUMOylation of peroxisome proliferator activated receptor γ1 on macrophage M2 polarization [J]. , 2019, 39(12): 1402-. |
| [7] | DONG Rui1, WANG Ying1, WANG Yu-mei1, SUN Zu-jun1, 2, YI Jing1, YANG Jie1. SENP3-mediated de-SUMOylation of p53 inhibits its activity in human lung cancer cell lines [J]. , 2018, 38(7): 732-. |
| [8] | CHENG Jin-ke. Ubiquitin-like modification (SUMOylation) and genomic stability [J]. , 2018, 38(7): 719-. |
| [9] | HUANG Chen-hui, LEI Ming. Molecular mechanism for telomere-binding proteins in regulating mammalian spermatogenesis [J]. , 2018, 38(3): 241-. |
| [10] | FU Tian-ran, ZHANG Liang. Effect of sumoylation on the structure and activity of human thymine DNA glycosylase [J]. , 2018, 38(1): 24-. |
| [11] | WANG Yun-qian, CHEN Ying-xuan. Role of protein post-translational modifications of lysine in tumor glucose metabolism [J]. , 2016, 36(8): 1219-. |
| [12] | MEI Xing-xing, LI Xiao-yong, WU Ji. Expressions of a group of miRNAs during testis development and regulation effect of miR-125a on development of spermatogonial stem cells [J]. , 2015, 35(5): 626-. |
| [13] | MIAO Yu, ZHAO Wen-bo, LI Qing, et al. Structure, location, function, and regulation of SUMO specific protease family [J]. , 2014, 34(11): 1683-. |
| [14] | SUN Zu-jun. Influence of oxidative stress on p53 post-translational modifications [J]. , 2009, 29(11): 1377-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||