Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (5): 611-618.doi: 10.3969/j.issn.1674-8115.2023.05.012
• Review • Previous Articles
HUANG Huayan(), XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun()
Received:
2022-09-30
Accepted:
2023-03-14
Online:
2023-05-28
Published:
2023-07-11
Contact:
LU Shun
E-mail:hhysjtuyxy@163.com;shunlu@sjtu.edu.cn
Supported by:
CLC Number:
HUANG Huayan, XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun. Advances in immunotherapy of advanced non-small cell lung cancer with EGFR mutation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 611-618.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.05.012
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. |
2 | ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. |
3 | MOLINA J R, YANG P, CASSIVI S D, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship[J]. Mayo Clin Proc, 2008, 83(5): 584-594. |
4 | SHI Y K, AU J S K, THONGPRASERT S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER)[J]. J Thorac Oncol, 2014, 9(2): 154-162. |
5 | SHARMA S V, BELL D W, SETTLEMAN J, et al. Epidermal growth factor receptor mutations in lung cancer[J]. Nat Rev Cancer, 2007, 7(3): 169-181. |
6 | SORIA J C, OHE Y, VANSTEENKISTE J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113-125. |
7 | ETTINGER D S, WOOD D E, AISNER D L, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530. |
8 | OHASHI K, MARUVKA Y E, MICHOR F, et al. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease[J]. J Clin Oncol, 2013, 31(8): 1070-1080. |
9 | GARON E B, HELLMANN M D, RIZVI N A, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase Ⅰ KEYNOTE-001 study[J]. J Clin Oncol, 2019, 37(28): 2518-2527. |
10 | AKBAY E A, KOYAMA S, CARRETERO J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors[J]. Cancer Discov, 2013, 3(12): 1355-1363. |
11 | LEE C K, MAN J, LORD S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer: a meta-analysis[J]. J Thorac Oncol, 2017, 12(2): 403-407. |
12 | HASTINGS K, YU H A, WEI W, et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(8): 1311-1320. |
13 | NOGAMI N, BARLESI F, SOCINSKI M A, et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain[J]. J Thorac Oncol, 2022, 17(2): 309-323. |
14 | LU S, WU L, JIAN H, et al. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial[J]. Lancet Oncol, 2022, 23(9): 1167-1179. |
15 | QIAO M, JIANG T, LIU X, et al. Immune checkpoint inhibitors in EGFR-mutated NSCLC: dusk or dawn?[J]. J Thorac Oncol, 2021, 16(8): 1267-1288. |
16 | LISBERG A, CUMMINGS A, GOLDMAN J W, et al. A phase Ⅱ study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC[J]. J Thorac Oncol, 2018, 13(8): 1138-1145. |
17 | GARON E B, Wolf B, LISBERG A, et al. Prior TKI therapy in NSCLC EGFR mutant patients associates with lack of response to anti-PD-1 treatment[J]. J Thorac Oncol, 2015, 10(9 Suppl 2): S269. |
18 | GETTINGER S, RIZVI N A, CHOW L Q, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer[J]. J Clin Oncol, 2016, 34(25): 2980-2987. |
19 | PETERS S, GETTINGER S, JOHNSON M L, et al. Phase Ⅱ trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH)[J]. J Clin Oncol, 2017, 35(24): 2781-2789. |
20 | RITTMEYER A, BARLESI F, WATERKAMP D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066): 255-265. |
21 | BORGHAEI H, PAZ-ARES L, HORN L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639. |
22 | GARASSINO M C, CHO B C, KIM J H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2018, 19(4): 521-536. |
23 | MAZIERES J, DRILON A, LUSQUE A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry[J]. Ann Oncol, 2019, 30(8): 1321-1328. |
24 | HAYASHI H, SUGAWARA S, FUKUDA Y, et al. A randomized phase Ⅱ study comparing nivolumab with carboplatin-pemetrexed for EGFR-mutated NSCLC with resistance to EGFR tyrosine kinase inhibitors (WJOG8515L)[J]. Clin Cancer Res, 2022, 28(5): 893-902. |
25 | AREDO J V, MAMBETSARIEV I, HELLYER J A, et al. Durvalumab for stage Ⅲ EGFR-mutated NSCLC after definitive chemoradiotherapy[J]. J Thorac Oncol, 2021, 16(6): 1030-1041. |
26 | HELLMANN M D, PAZ-ARES L, CARO R B, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer[J]. N Engl J Med, 2019, 381(21): 2020-2031. |
27 | HELLMANN M D, RIZVI N A, GOLDMAN J W, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study[J]. Lancet Oncol, 2017, 18(1): 31-41. |
28 | GUBENS M A, SEQUIST L V, STEVENSON J P, et al. Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non-small-cell lung cancer: KEYNOTE-021 cohorts D and H[J]. Lung Cancer, 2019, 130: 59-66. |
29 | SUGIYAMA E, TOGASHI Y, TAKEUCHI Y, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer[J]. Sci Immunol, 2020, 5(43): eaav3937. |
30 | YANG J C, GADGEEL S M, SEQUIST L V, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation[J]. J Thorac Oncol, 2019, 14(3): 553-559. |
31 | CREELAN B C, YEH T C, KIM S W, et al. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer[J]. Br J Cancer, 2021, 124(2): 383-390. |
32 | GETTINGER S, HELLMANN M D, CHOW L Q M, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC[J]. J Thorac Oncol, 2018, 13(9): 1363-1372. |
33 | OXNARD G R, YU H, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer[J]. Ann Oncol, 2020, 31(4): 507-516. |
34 | YANG J C H, SHEPHERD F A, KIM D W, et al. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report[J]. J Thorac Oncol, 2019, 14(5): 933-939. |
35 | SCHOENFELD A J, ARBOUR K C, RIZVI H, et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib[J]. Ann Oncol, 2019, 30(5): 839-844. |
36 | RIZVI N A, HELLMANN M D, BRAHMER J R, et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer[J]. J Clin Oncol, 2016, 34(25): 2969-2979. |
37 | SHEN C A, CHAO H S, SHIAO T H, et al. Comparison of the outcome between immunotherapy alone or in combination with chemotherapy in EGFR-mutant non-small cell lung cancer[J]. Sci Rep, 2021, 11: 16122. |
38 | LIU S T, WU F Y, LI X F, et al. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC[J]. Front Oncol, 2021, 11: 639947. |
39 | LU S, WU L, JIAN H, et al. Sintilimab with or without IBI305 plus chemotherapy in patients with EGFR mutated non-squamous non-small cell lung cancer (EGFRm nsqNSCLC) who progressed on EGFR tyrosine-kinase inhibitors (TKIs) therapy: second interim analysis of phase Ⅲ ORIENT-31 study[J]. Ann Oncol, 2022, 33: S1424. |
40 | LAM T C, TSANG K C, CHOI H C, et al. Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure[J]. Lung Cancer, 2021, 159: 18-26. |
41 | ROBICHAUX J P, LE X N, VIJAYAN R S K, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC[J]. Nature, 2021, 597(7878): 732-737. |
42 | CHEN Y, YANG Z Y, WANG Y N, et al. Pembrolizumab plus chemotherapy or anlotinib vs. pembrolizumab alone in patients with previously treated EGFR-mutant NSCLC[J]. Front Oncol, 2021, 11: 671228. |
43 | TIAN T, YU M, LI J, et al. Front-line ICI-based combination therapy post-TKI resistance may improve survival in NSCLC patients with EGFR mutation[J]. Front Oncol, 2021, 11: 739090. |
44 | CHEN Q, SHANG X L, LIU N, et al. Features of patients with advanced EGFR-mutated non-small cell lung cancer benefiting from immune checkpoint inhibitors[J]. Front Immunol, 2022, 13: 931718. |
45 | YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247. |
46 | YAMADA T, HIRAI S, KATAYAMA Y, et al. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer[J]. Cancer Med, 2019, 8(4): 1521-1529. |
47 | YU X, LI J Q, YE L Y, et al. Real-world outcomes of chemo-antiangiogenesis versus chemo-immunotherapy combinations in EGFR-mutant advanced non-small cell lung cancer patients after failure of EGFR-TKI therapy[J]. Transl Lung Cancer Res, 2021, 10(9): 3782-3792. |
48 | HARATANI K, HAYASHI H, TANAKA T, et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment[J]. Ann Oncol, 2017, 28(7): 1532-1539. |
49 | OU S H I, LIN H M, HONG J L, et al. Real-world response and outcomes in NSCLC patients with EGFR exon 20 insertion mutations[J]. J Clin Oncol, 2021, 39(15_suppl): 9098. |
50 | YANG G J, YANG Y N, LIU R Z, et al. First-line immunotherapy or angiogenesis inhibitor combined with chemotherapy for advanced non-small cell lung cancer with EGFR exon 20 insertions: real-world evidence from China[J]. Cancer Med, 2023, 12(1): 335-344. |
51 | HUNG M S, CHEN I C, LIN P Y, et al. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer[J]. Oncol Lett, 2016, 12(6): 4598-4604. |
52 | CHEN D S, HURWITZ H. Combinations of bevacizumab with cancer immunotherapy[J]. Cancer J, 2018, 24(4): 193-204. |
53 | BORGSTRÖM P, HUGHES G K, HANSELL P, et al. Leukocyte adhesion in angiogenic blood vessels. Role of E-selectin, P-selectin, and β2 integrin in lymphotoxin-mediated leukocyte recruitment in tumor microvessels[J]. J Clin Invest, 1997, 99(9): 2246-2253. |
54 | WALLIN J J, BENDELL J C, FUNKE R, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma[J]. Nat Commun, 2016, 7: 12624. |
55 | HUANG Y H, YUAN J P, RIGHI E, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J]. Proc Natl Acad Sci U S A, 2012, 109(43): 17561-17566. |
56 | VORON T, COLUSSI O, MARCHETEAU E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors[J]. J Exp Med, 2015, 212(2): 139-148. |
57 | STAGG J, DIVISEKERA U, DURET H, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis[J]. Cancer Res, 2011, 71(8): 2892-2900. |
58 | STAGG J, BEAVIS P A, DIVISEKERA U, et al. CD73-deficient mice are resistant to carcinogenesis[J]. Cancer Res, 2012, 72(9): 2190-2196. |
59 | VIGANO S, ALATZOGLOU D, IRVING M, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function[J]. Front Immunol, 2019, 10: 925. |
60 | LE X N, NEGRAO M V, REUBEN A, et al. Characterization of the immune landscape of EGFR-mutant NSCLC identifies CD73/adenosine pathway as a potential therapeutic target[J]. J Thorac Oncol, 2021, 16(4): 583-600. |
61 | TU E, MCGLINCHEY K, WANG J X, et al. Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC[J]. JCI Insight, 2022, 7(3): e142843. |
62 | LIANG S Y, RISTICH V, ARASE H, et al. Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6: STAT3 signaling pathway[J]. Proc Natl Acad Sci U S A, 2008, 105(24): 8357-8362. |
63 | GAO A Q, SUN Y P, PENG G Y. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 278-285. |
64 | CHEN X Z, GAO A Q, ZHANG F, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation[J]. Theranostics, 2021, 11(7): 3392-3416. |
65 | BATLLE E, MASSAGUÉ J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924-940. |
[1] | HAN Ting, LÜ Chunxin, ZHUO Meng, XIA Qing, LIU Tengfei, WU Xiuqi, LIN Xiaolin, XIAO Xiuying. Related factors and prognostic analysis of adverse events of immunotherapy in advanced gastric cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1053-1061. |
[2] | LIAO Yahui, LIU Liyun, ZHU Hongrui, LIN Houwen, YAN Jizhou, SUN Fan. Marine sponge-derived smenospongine overcomes resistance of cisplatin via inhibiting EGFR-Akt-ABCG2 pathway in NSCLC cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 997-1007. |
[3] | LIU Ziyang, WANG Xiaowen, CHEN Li. lncRNA GK-IT1 influences the carcinogenesis of non-small cell lung cancer cells through regulating aldolase A [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 591-601. |
[4] | LU Wenqing, MENG Zhouwenli, YU Yongfeng, LU Shun. Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 535-544. |
[5] | LI Ruonan, CHEN Xiaoke, XU Yuanyuan, TAN Qiang. Advances in postoperative adjuvant targeted therapy for patients with stage ⅠB-ⅢA non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(11): 1612-1619. |
[6] | Xu-xin-yi LING, Yao ZHANG, Hua ZHONG. Research progress in screening non-small cell lung cancer patients who will benefit from immunotherapy [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1114-1119. |
[7] | Yun-fang MA, Li-na PAN, Zhen LI, Bei-li GAO, Jia-an HU, Zhi-hong XU. Exploratory study on downregulation of PD-L1 in KRAS G12V-mutant non-small cell lung cancer cells by selumetinib [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 741-748. |
[8] | HE Chun-ming, YIN Hang, ZHENG Jia-jie, TANG Jian, FU Yu-jie, ZHAO Xiao-jing. Immunotherapy for lung cancer: immunosuppressive cells and intrapulmonary immunity [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1137-1142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||