1 |
GIJSELINCK I, VAN LANGENHOVE T, VAN DER ZEE J, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study[J]. Lancet Neurol, 2012, 11(1): 54-65.
|
2 |
KWON I, XIANG S H, KATO M, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells[J]. Science, 2014, 345(6201): 1139-1145.
|
3 |
TAO Z T, WANG H F, XIA Q, et al. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity[J]. Hum Mol Genet, 2015, 24(9): 2426-2441.
|
4 |
SABERI S, STAUFFER J E, JIANG J, et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis[J]. Acta Neuropathol, 2018, 135(3): 459-474.
|
5 |
LOPEZ-GONZALEZ R, LU Y B, GENDRON T F, et al. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons[J]. Neuron, 2016, 92(2): 383-391.
|
6 |
ZHANG Y J, GENDRON T F, EBBERT M T W, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis[J]. Nat Med, 2018, 24(8): 1136-1142.
|
7 |
LI S, WU Z, TANTRAY I, et al. Quality-control mechanisms targeting translationally stalled and C-terminally extended poly(GR) associated with ALS/FTD[J]. Proc Natl Acad Sci USA, 2020, 117(40): 25104-25115.
|
8 |
GAYATRI M B, GAJULA N N, CHAVA S, et al. High glutamine suppresses osteogenesis through mTORC1-mediated inhibition of the mTORC2/AKT-473/RUNX2 axis[J]. Cell Death Discov, 2022, 8(1): 277.
|
9 |
LESNIK C, GOLANI-ARMON A, ARAVA Y. Localized translation near the mitochondrial outer membrane: an update[J]. RNA Biol, 2015, 12(8): 801-809.
|
10 |
CHOI S Y, LOPEZ-GONZALEZ R, KRISHNAN G, et al. C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo[J]. Nat Neurosci, 2019, 22(6): 851-862.
|
11 |
LI S, WU Z, LI Y, et al. Altered MICOS morphology and mitochondrial ion homeostasis contribute to poly(GR) toxicity associated with C9-ALS/FTD[J]. Cell Rep, 2020, 32(5): 107989.
|
12 |
XIE X X, SHU R N, YU C N, et al. Mammalian AKT, the emerging roles on mitochondrial function in diseases[J]. Aging Dis, 2022, 13(1): 157-174.
|
13 |
WANG H, CHEN S, ZHANG Y, et al. Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion[J]. Nitric Oxide, 2019, 91: 23-34.
|
14 |
WANG S, KANDADI M R, REN J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: role of autophagy and mitophagy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(7): 1865-1875.
|
15 |
MOR D E, SOHRABI S, KALETSKY R, et al. Metformin rescues Parkinson's disease phenotypes caused by hyperactive mitochondria[J]. Proc Natl Acad Sci USA, 2020, 117(42): 26438-26447.
|
16 |
ZU T, GUO S, BARDHI O, et al. Metformin inhibits RAN translation through PKR pathway and mitigates disease in C9orf72 ALS/FTD mice[J]. Proc Natl Acad Sci USA, 2020, 117(31): 18591-18599.
|