Journal of Shanghai Jiao Tong University (Medical Science)
CAI Qiangwei1,2,3(), SUN Feng1,2,3, WU Wenyu1,2,3, SHAO Fuming4, GAO Zhengliang1,2,3,4(
), JIN Shengkai2,3(
)
Received:
2024-05-23
Accepted:
2024-07-02
Contact:
GAO Zhengliang, JIN Shengkai
E-mail:656675148@qq.com;zhengliang_gao@tongji.edu.cn;jinsk1223@163.com
CLC Number:
CAI Qiangwei, SUN Feng, WU Wenyu, SHAO Fuming, GAO Zhengliang, JIN Shengkai. Transcriptional regulatory network analysis of microglia in multiple sclerosis[J]. Journal of Shanghai Jiao Tong University (Medical Science).
1 | BENEDICT R H B, AMATO M P, DELUCA J, et al. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues[J]. Lancet Neurol, 2020, 19(10): 860-871. |
2 | BANWELL B, BENNETT J L, MARIGNIER R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD Panel proposed criteria[J]. Lancet Neurol, 2023, 22(3): 268-282. |
3 | KUHLMANN T, MOCCIA M, COETZEE T, et al. Multiple sclerosis progression: time for a new mechanism-driven framework[J]. Lancet Neurol, 2023, 22(1): 78-88. |
4 | 谭红梅, 全超. 多发性硬化疾病修正治疗进展[J]. 重庆医科大学学报, 2024, 49(5): 588-592. |
TAN H M, QUAN C. Advances in disease-modifying therapy for multiple sclerosis[J]. Journal of Chongqing Medical University, 2024, 49(5): 588-592. | |
5 | FAISSNER S, PLEMEL J R, GOLD R, et al. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18: 905-922. |
6 | BORST K, DUMAS A A, PRINZ M. Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208. |
7 | PRINZ M, JUNG S, PRILLER J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311. |
8 | LUKENS J R, EYO U B. Microglia and neurodevelopmental disorders[J]. Annu Rev Neurosci, 2022, 45: 425-445. |
9 | DADWAL S, HENEKA M T. Microglia heterogeneity in health and disease[J]. FEBS Open Bio, 2024, 14(2): 217-229. |
10 | MADORE C, YIN Z, LEIBOWITZ J, et al. Microglia, lifestyle stress, and neurodegeneration[J]. Immunity, 2020, 52(2): 222-240. |
11 | KENT S A, MIRON V E. Microglia regulation of central nervous system myelin health and regeneration[J]. Nat Rev Immunol, 2024, 24: 49-63. |
12 | MCNAMARA N B, MUNRO D A D, BESTARD-CUCHE N, et al. Microglia regulate central nervous system myelin growth and integrity[J]. Nature, 2023, 613: 120-129. |
13 | YONG V W. Microglia in multiple sclerosis: protectors turn destroyers[J]. Neuron, 2022, 110(21): 3534-3548. |
14 | LLOYD A F, MIRON V E. The pro-remyelination properties of microglia in the central nervous system[J]. Nat Rev Neurol, 2019, 15: 447-458. |
15 | ZHAO S, UMPIERRE A D, WU L J. Tuning neural circuits and behaviors by microglia in the adult brain[J]. Trends Neurosci, 2024, 47(3): 181-194. |
16 | SHERAFAT A, PFEIFFER F, REISS A M, et al. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor[J]. Nat Commun, 2021, 12: 2265. |
17 | DONG Y F, D′MELLO C, PINSKY W, et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia[J]. Nat Neurosci, 2021, 24: 489-503. |
18 | LAMPRON A, LAROCHELLE A, LAFLAMME N, et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes[J]. J Exp Med, 2015, 212(4): 481-495. |
19 | RAWJI K S, YOUNG A M H, GHOSH T, et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system[J]. Acta Neuropathol, 2020, 139(5): 893-909. |
20 | HAGAN N, KANE J L, GROVER D, et al. CSF1R signaling is a regulator of pathogenesis in progressive MS[J]. Cell Death Dis, 2020, 11: 904. |
21 | HWANG D, SEYEDSADR M S, ISHIKAWA L L W, et al. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation[J]. Proc Natl Acad Sci USA, 2022, 119(14): e2111804119. |
22 | MARZAN D E, BRÜGGER-VERDON V, WEST B L, et al. Activated microglia drive demyelination via CSF1R signaling[J]. Glia, 2021, 69(6): 1583-1604. |
23 | TAHMASEBI F, PASBAKHSH P, MORTEZAEE K, et al. Effect of the CSF1R inhibitor PLX3397 on remyelination of corpus callosum in a cuprizone-induced demyelination mouse model[J]. J Cell Biochem, 2019, 120(6): 10576-10586. |
24 | VOET S, PRINZ M, VAN LOO G. Microglia in central nervous system inflammation and multiple sclerosis pathology[J]. Trends Mol Med, 2019, 25(2): 112-123. |
25 | SEN M K, MAHNS D A, COORSSEN J R, et al. The roles of microglia and astrocytes in phagocytosis and myelination: insights from the cuprizone model of multiple sclerosis[J]. Glia, 2022, 70(7): 1215-1250. |
26 | JAKIMOVSKI D, BITTNER S, ZIVADINOV R, et al. Multiple sclerosis[J]. Lancet, 2024, 403(10422):183-202. |
27 | FRISCHER J M, BRAMOW S, DAL-BIANCO A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains[J]. Brain, 2009, 132(5): 1175-1189. |
28 | ABSINTA M, MARIC D, GHARAGOZLOO M, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis[J]. Nature, 2021, 597: 709-714. |
29 | CLARK I C, GUTIÉRREZ-VÁZQUEZ C, WHEELER M A, et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation[J]. Science, 2021, 372(6540): eabf1230. |
30 | SCHIRMER L, VELMESHEV D, HOLMQVIST S, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis[J]. Nature, 2019, 573: 75-82. |
31 | JÄKEL S, AGIRRE E, MENDANHA FALCÃO A, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis[J]. Nature, 2019, 566: 543-547. |
32 | KISS M G, MINDUR J E, YATES A G, et al. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis[J]. Immunity, 2023, 56(7): 1502-1514.e8. |
33 | MIEDEMA A, GERRITS E, BROUWER N, et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter[J]. Acta Neuropathol Commun, 2022, 10(1): 8. |
34 | HAO Y, HAO S, ANDERSEN-NISSEN E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13): 3573-3587.e29. |
35 | HAFEMEISTER C, SATIJA R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296. |
36 | KORSUNSKY I, MILLARD N, FAN J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony[J]. Nat Meth, 2019, 16: 1289-1296. |
37 | HU C, LI T, XU Y, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data[J]. Nucleic Acids Res, 2023, 51(d1): D870-D876. |
38 | WU T, HU E, XU S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation (Camb), 2021, 2(3): 100141. |
39 | YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. |
40 | TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32: 381-386. |
41 | QIU X J, HILL A, PACKER J, et al. Single-cell mRNA quantification and differential analysis with Census[J]. Nat Meth, 2017, 14: 309-315. |
42 | QIU X J, MAO Q, TANG Y, et al. Reversed graph embedding resolves complex single-cell trajectories[J]. Nat Meth, 2017, 14: 979-982. |
43 | CAO J Y, SPIELMANN M, QIU X J, et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566: 496-502. |
44 | AIBAR S, GONZÁLEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Meth, 2017, 14: 1083-1086. |
45 | HÄNZELMANN S, CASTELO R, GUINNEY J. GSVA: gene set variation analysis for microarray and RNA-seq data[J]. BMC Bioinformatics, 2013, 14: 7. |
46 | RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
47 | KOOI E J, STRIJBIS E M, VAN DER VALK P, et al. Heterogeneity of cortical lesions in multiple sclerosis: clinical and pathologic implications[J]. Neurology, 2012, 79(13): 1369-1376. |
48 | SINGHAL T, O′CONNOR K, DUBEY S, et al. Gray matter microglial activation in relapsing vs progressive MS: a[F-18]PBR06-PET study[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 6(5): e587. |
49 | FAN L Y, YANG J, LIU R Y, et al. Integrating single-nucleus sequence profiling to reveal the transcriptional dynamics of Alzheimer′s disease, Parkinson's disease, and multiple sclerosis[J]. J Transl Med, 2023, 21(1): 649. |
50 | ZINATIZADEH M R, SCHOCK B, CHALBATANI G M, et al. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases[J]. Genes Dis, 2021, 8(3): 287-297. |
[1] | CAI Qiangwei, SUN Feng, WU Wenyu, SHAO Fuming, GAO Zhengliang, JIN Shengkai. Transcriptional regulatory network analysis of microglia in multiple sclerosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 29-41. |
[2] | ZHU Xiaochen, XIE Xinyi, ZHAO Xuri, XU Lina, HE Zhiyan, ZHOU Wei. Construction and characterization of mice with conditional knockout of Stat3 gene in microglia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 689-698. |
[3] | SHA Xudong, WANG Chenfei, LU Jia, YU Zhihua. Regulation of high-fat diet-induced microglial metabolism by transient receptor potential vanilloid type 1 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1493-1506. |
[4] | WANG Dayuan, XU Jianrong, JIANG Gan, SONG Qingxiang, CHEN Jun, SONG Huahua, GU Xiao, GAO Xiaoling. Effect of α-mangostin on amyotrophic lateral sclerosis and its mechanism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(9): 1265-1274. |
[5] | XIA Shou-bing, XU Chun-jie, JIANG Chun-hui, GU Lei, SUN Long-ci, XU Qing. Bioinformatics analysis of ulcerative colitis and its malignant complications and screening of potential therapeutic drugs [J]. , 2020, 40(3): 317-. |
[6] | LI Qian, GAO Jing-ze, LI Yun, SONG Kun, SHEN Qian-cheng. Bioinformatics analysis of esophageal squamous cell carcinoma genomic chip and prediction of targeted drug [J]. , 2020, 40(2): 194-. |
[7] | WANG Hong-mei,FU Jian-liang,ZHANG Ting,CHEN Jing-jiong,ZHAO Yu-wu. Inhibition of genistein against LPS-induced proinflammatory response in microglia [J]. , 2019, 39(5): 446-. |
[8] | MAO Rui-zhi1, 2, ZHANG Chen1, 2, FANG Yi-ru1, 2. Research progress of microglia and peripheral monocytes in mood disorders [J]. , 2018, 38(5): 552-. |
[9] | HAN Shuo, Lü Tao, ZHANG Xiao-hua . Activation mechanism and therapeutic use of microglia in subarachnoid hemorrhage#br# [J]. , 2017, 37(8): 1169-. |
[10] | ZHI Nan, XU Qun . Effects of d1-3-n-butylphthalide on the release of inflammatory mediators in lipopolysaccharide-activated microglia cells [J]. , 2016, 36(12): 1719-. |
[11] |
SUN Xi-ling, LI Chun-bo, XIE Bin, BIAN Qian.
Effects and mechanisms of ziprasidone towards the activation of microglia |
[12] | CHEN Sheng-di, WANG Gang, LIU Jun, et al. Basic and clinical research on the pathogenesis, diagnosis and treatment of Parkinson´s disease [J]. , 2012, 32(9): 1221-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 263
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||