Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (2): 169-178.doi: 10.3969/j.issn.1674-8115.2025.02.005
• Clinical research • Previous Articles
XU Feixiang1(), YU Feng2, WANG Ruilan3, SONG Zhenju4, TONG Chaoyang4, ZHU Changqing1(
)
Received:
2024-09-27
Accepted:
2024-11-22
Online:
2025-02-28
Published:
2025-02-28
Contact:
ZHU Changqing
E-mail:1303917815@qq.com;zhuzhangqing@renji.com
Supported by:
CLC Number:
XU Feixiang, YU Feng, WANG Ruilan, SONG Zhenju, TONG Chaoyang, ZHU Changqing. Application of metagenomics next-generation sequencing of pathogen in patients with pneumonia-induced sepsis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 169-178.
Characteristic | Before PSM | After PSM | ||||||
---|---|---|---|---|---|---|---|---|
Conventional test-only group (n=222) | Combined mNGS test group (n=311) | P value | SMD | Conventional test-only group (n=187) | Combined mNGS test group (n=187) | P value | SMD | |
Male/n(%) | 164 (73.9) | 224 (72.0) | 0.708 | 0.042 | 136 (72.7) | 138 (73.8) | 0.907 | 0.024 |
Age/year | 67.0 (53.2, 75.0) | 68.0 (56.0, 78.0) | 0.079 | 0.151 | 67.0 (58.0, 75.0) | 68.0 (54.5, 77.0) | 0.996 | 0.006 |
BMI/(kg·m-2) | 22.7 (20.8, 24.6) | 22.9 (20.8, 25.1) | 0.285 | 0.040 | 22.6 (20.7, 24.5) | 22.6 (20.4, 24.9) | 0.823 | 0.003 |
ICH/n(%) | 34 (15.3) | 55 (17.7) | 0.545 | 0.064 | 29 (15.5) | 30 (16.0) | 1.000 | 0.015 |
CCI | 3.0 (2.0, 5.0) | 4.0 (2.0, 5.0) | 0.295 | 0.107 | 3.0 (2.0, 6.0) | 3.0 (2.0, 5.0) | 0.524 | 0.062 |
Shock/n(%) | 57 (25.7) | 108 (34.7) | 0.033 | 0.198 | 50 (26.7) | 55 (29.4) | 0.645 | 0.060 |
MODS/n(%) | 53 (23.9) | 125 (40.2) | <0.001 | 0.355 | 52 (27.8) | 47 (25.1) | 0.639 | 0.061 |
HR/(beat per minute) | 98.0 (84.2, 114.0) | 101.0 (85.0, 117.0) | 0.341 | 0.119 | 98.0 (84.0, 115.0) | 100.0 (84.0, 116.0) | 0.526 | 0.101 |
RR/(breath per minute) | 20.0 (18.0, 24.0) | 22.0 (19.0, 26.0) | 0.037 | 0.183 | 20.0 (18.0, 24.0) | 22.0 (19.5, 26.5) | 0.009 | 0.277 |
SBP/mmHg | 124.0 (109.0, 137.8) | 120.0 (105.0, 139.5) | 0.479 | 0.076 | 123.0 (109.0, 139.5) | 120.0 (104.0, 136.5) | 0.268 | 0.147 |
DBP/mmHg | 71.0 (63.0, 79.0) | 70.0 (60.0, 79.0) | 0.162 | 0.122 | 70.0 (62.0, 78.0) | 70.0 (60.0, 79.0) | 0.427 | 0.105 |
Baseline WBC/(×109·L-1) | 10.1 (6.8, 16.0) | 10.5 (6.9, 15.6) | 0.698 | 0.029 | 10.2 (6.8, 16.1) | 10.3 (7.1, 14.7) | 0.914 | 0.038 |
Baseline PCT/(ng·mL-1) | 0.8 (0.3, 7.5) | 1.4 (0.3, 9.5) | 0.318 | 0.091 | 0.8 (0.3, 7.0) | 0.8 (0.2, 7.3) | 0.685 | 0.008 |
Total bilirubin/(μmol·L-1) | 13.8 (9.7, 22.7) | 14.1 (9.1, 22.0) | 0.765 | 0.099 | 13.7 (9.7, 22.2) | 13.6 (8.3, 20.8) | 0.239 | 0.007 |
Serum creatinine/(μmol·L-1) | 83.4 (60.0, 130.8) | 78.0 (56.8, 137.5) | 0.682 | 0.015 | 80.3 (58.1, 119.4) | 76.0 (57.5, 115.0) | 0.507 | 0.016 |
PaO2/FiO2 | 212.0 (152.0, 287.8) | 200.0 (127.5, 275.0) | 0.100 | 0.105 | 214.0 (148.5, 286.0) | 202.0 (140.5, 275.5) | 0.482 | 0.034 |
Invasive mechanical ventilation/n(%) | 67 (30.2) | 167 (53.7) | <0.001 | 0.491 | 64 (34.2) | 68 (36.4) | 0.745 | 0.045 |
Baseline SOFA/score | 5.0 (3.0, 8.0) | 6.0 (4.0, 10.5) | 0.009 | 0.228 | 5.0 (3.0, 9.0) | 5.0 (3.0, 10.0) | 0.645 | 0.082 |
Baseline APACHE Ⅱ/score | 15.0 (10.2, 22.8) | 18.0 (11.5, 24.0) | 0.021 | 0.164 | 15.0 (10.5, 21.5) | 15.0 (10.0, 23.0) | 0.786 | 0.016 |
Number of antibiotics | 2.0 (1.0, 2.0) | 2.0 (1.5, 3.0) | 0.063 | 0.185 | 2.0 (1.0, 2.0) | 2.0 (1.0, 2.0) | 0.874 | 0.041 |
Glucocorticoids/n(%) | 58 (26.1) | 87 (28.0) | 0.708 | 0.042 | 50 (26.7) | 55 (29.4) | 0.645 | 0.060 |
Anticoagulation/n(%) | 46 (20.7) | 77 (24.8) | 0.324 | 0.096 | 41 (21.9) | 46 (24.6) | 0.624 | 0.063 |
CRRT/n(%) | 17 (7.7) | 39 (12.5) | 0.095 | 0.163 | 16 (8.6) | 17 (9.1) | 1.000 | 0.019 |
Tab 1 Baseline characteristics of patients before and after propensity score matching
Characteristic | Before PSM | After PSM | ||||||
---|---|---|---|---|---|---|---|---|
Conventional test-only group (n=222) | Combined mNGS test group (n=311) | P value | SMD | Conventional test-only group (n=187) | Combined mNGS test group (n=187) | P value | SMD | |
Male/n(%) | 164 (73.9) | 224 (72.0) | 0.708 | 0.042 | 136 (72.7) | 138 (73.8) | 0.907 | 0.024 |
Age/year | 67.0 (53.2, 75.0) | 68.0 (56.0, 78.0) | 0.079 | 0.151 | 67.0 (58.0, 75.0) | 68.0 (54.5, 77.0) | 0.996 | 0.006 |
BMI/(kg·m-2) | 22.7 (20.8, 24.6) | 22.9 (20.8, 25.1) | 0.285 | 0.040 | 22.6 (20.7, 24.5) | 22.6 (20.4, 24.9) | 0.823 | 0.003 |
ICH/n(%) | 34 (15.3) | 55 (17.7) | 0.545 | 0.064 | 29 (15.5) | 30 (16.0) | 1.000 | 0.015 |
CCI | 3.0 (2.0, 5.0) | 4.0 (2.0, 5.0) | 0.295 | 0.107 | 3.0 (2.0, 6.0) | 3.0 (2.0, 5.0) | 0.524 | 0.062 |
Shock/n(%) | 57 (25.7) | 108 (34.7) | 0.033 | 0.198 | 50 (26.7) | 55 (29.4) | 0.645 | 0.060 |
MODS/n(%) | 53 (23.9) | 125 (40.2) | <0.001 | 0.355 | 52 (27.8) | 47 (25.1) | 0.639 | 0.061 |
HR/(beat per minute) | 98.0 (84.2, 114.0) | 101.0 (85.0, 117.0) | 0.341 | 0.119 | 98.0 (84.0, 115.0) | 100.0 (84.0, 116.0) | 0.526 | 0.101 |
RR/(breath per minute) | 20.0 (18.0, 24.0) | 22.0 (19.0, 26.0) | 0.037 | 0.183 | 20.0 (18.0, 24.0) | 22.0 (19.5, 26.5) | 0.009 | 0.277 |
SBP/mmHg | 124.0 (109.0, 137.8) | 120.0 (105.0, 139.5) | 0.479 | 0.076 | 123.0 (109.0, 139.5) | 120.0 (104.0, 136.5) | 0.268 | 0.147 |
DBP/mmHg | 71.0 (63.0, 79.0) | 70.0 (60.0, 79.0) | 0.162 | 0.122 | 70.0 (62.0, 78.0) | 70.0 (60.0, 79.0) | 0.427 | 0.105 |
Baseline WBC/(×109·L-1) | 10.1 (6.8, 16.0) | 10.5 (6.9, 15.6) | 0.698 | 0.029 | 10.2 (6.8, 16.1) | 10.3 (7.1, 14.7) | 0.914 | 0.038 |
Baseline PCT/(ng·mL-1) | 0.8 (0.3, 7.5) | 1.4 (0.3, 9.5) | 0.318 | 0.091 | 0.8 (0.3, 7.0) | 0.8 (0.2, 7.3) | 0.685 | 0.008 |
Total bilirubin/(μmol·L-1) | 13.8 (9.7, 22.7) | 14.1 (9.1, 22.0) | 0.765 | 0.099 | 13.7 (9.7, 22.2) | 13.6 (8.3, 20.8) | 0.239 | 0.007 |
Serum creatinine/(μmol·L-1) | 83.4 (60.0, 130.8) | 78.0 (56.8, 137.5) | 0.682 | 0.015 | 80.3 (58.1, 119.4) | 76.0 (57.5, 115.0) | 0.507 | 0.016 |
PaO2/FiO2 | 212.0 (152.0, 287.8) | 200.0 (127.5, 275.0) | 0.100 | 0.105 | 214.0 (148.5, 286.0) | 202.0 (140.5, 275.5) | 0.482 | 0.034 |
Invasive mechanical ventilation/n(%) | 67 (30.2) | 167 (53.7) | <0.001 | 0.491 | 64 (34.2) | 68 (36.4) | 0.745 | 0.045 |
Baseline SOFA/score | 5.0 (3.0, 8.0) | 6.0 (4.0, 10.5) | 0.009 | 0.228 | 5.0 (3.0, 9.0) | 5.0 (3.0, 10.0) | 0.645 | 0.082 |
Baseline APACHE Ⅱ/score | 15.0 (10.2, 22.8) | 18.0 (11.5, 24.0) | 0.021 | 0.164 | 15.0 (10.5, 21.5) | 15.0 (10.0, 23.0) | 0.786 | 0.016 |
Number of antibiotics | 2.0 (1.0, 2.0) | 2.0 (1.5, 3.0) | 0.063 | 0.185 | 2.0 (1.0, 2.0) | 2.0 (1.0, 2.0) | 0.874 | 0.041 |
Glucocorticoids/n(%) | 58 (26.1) | 87 (28.0) | 0.708 | 0.042 | 50 (26.7) | 55 (29.4) | 0.645 | 0.060 |
Anticoagulation/n(%) | 46 (20.7) | 77 (24.8) | 0.324 | 0.096 | 41 (21.9) | 46 (24.6) | 0.624 | 0.063 |
CRRT/n(%) | 17 (7.7) | 39 (12.5) | 0.095 | 0.163 | 16 (8.6) | 17 (9.1) | 1.000 | 0.019 |
Antibiotics adjustment | Conventional test-only group (n=222) | Combined mNGS test group (n=311) | P value |
---|---|---|---|
Escalation/n(%) | 22 (9.9) | 52 (16.7) | 0.034 |
De-escalation/n(%) | 17 (7.7) | 73 (23.5) | <0.001 |
Total adjustment/n(%) | 28 (12.6) | 94 (30.2) | <0.001 |
Tab 2 Comparison of anti-infective treatment modification rates between the conventional test-only group and the combined mNGS test group
Antibiotics adjustment | Conventional test-only group (n=222) | Combined mNGS test group (n=311) | P value |
---|---|---|---|
Escalation/n(%) | 22 (9.9) | 52 (16.7) | 0.034 |
De-escalation/n(%) | 17 (7.7) | 73 (23.5) | <0.001 |
Total adjustment/n(%) | 28 (12.6) | 94 (30.2) | <0.001 |
Indicator | Conventional test-only group (n=187) | Combined mNGS test group (n=187) | P value |
---|---|---|---|
Primary indicator | |||
7-day all-cause mortality rate/% | 8.6 (5.3‒13.5) | 4.8 (2.6‒8.9) | 0.031 |
Secondary indicator | |||
Change of SOFA score at day 7/score | -1.2 (-1.9‒-0.6) | -1.9 (-2.5‒-1.3) | 0.478 |
Change of APACHE Ⅱ score at day 7/score | -2.4 (-3.5‒-1.3) | -2.7 (-3.9‒-1.5) | 0.843 |
28-day all-cause mortality rate/% | 19.3 (14.2‒25.8) | 16.6 (11.9‒22.6) | 0.129 |
Mechanical ventilation or death by day 28 in patients not receiving endotracheal intubation at baseline/% | 25.2 (18.4‒33.5) | 16.8 (11.2‒24.5) | 0.038 |
Ventilation-free days within 28 d/d | 18.4 (16.5‒20.3) | 19.9 (18.2‒21.5) | 0.041 |
Hospital-free days within 28 d/d | 6.9 (5.7‒8.1) | 7.1 (6.0‒8.2) | 0.760 |
Daily hospitalization cost/yuan | 5 738 (5 049‒6 427) | 5 861 (5 062‒6 661) | 0.711 |
Tab 3 Comparison of prognostic indicators between the conventional test-only group and the combined mNGS test group
Indicator | Conventional test-only group (n=187) | Combined mNGS test group (n=187) | P value |
---|---|---|---|
Primary indicator | |||
7-day all-cause mortality rate/% | 8.6 (5.3‒13.5) | 4.8 (2.6‒8.9) | 0.031 |
Secondary indicator | |||
Change of SOFA score at day 7/score | -1.2 (-1.9‒-0.6) | -1.9 (-2.5‒-1.3) | 0.478 |
Change of APACHE Ⅱ score at day 7/score | -2.4 (-3.5‒-1.3) | -2.7 (-3.9‒-1.5) | 0.843 |
28-day all-cause mortality rate/% | 19.3 (14.2‒25.8) | 16.6 (11.9‒22.6) | 0.129 |
Mechanical ventilation or death by day 28 in patients not receiving endotracheal intubation at baseline/% | 25.2 (18.4‒33.5) | 16.8 (11.2‒24.5) | 0.038 |
Ventilation-free days within 28 d/d | 18.4 (16.5‒20.3) | 19.9 (18.2‒21.5) | 0.041 |
Hospital-free days within 28 d/d | 6.9 (5.7‒8.1) | 7.1 (6.0‒8.2) | 0.760 |
Daily hospitalization cost/yuan | 5 738 (5 049‒6 427) | 5 861 (5 062‒6 661) | 0.711 |
1 | SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. |
2 | RUDD K E, JOHNSON S C, AGESA K M, et al. Global, regional, and national sepsis incidence and mortality, 1990‒2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. |
3 | WENG L, XU Y, YIN P, et al. National incidence and mortality of hospitalized sepsis in China[J]. Crit Care, 2023, 27(1): 84. |
4 | MESSACAR K, PARKER S K, TODD J K, et al. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship[J]. J Clin Microbiol, 2017, 55(3): 715-723. |
5 | DIAO Z L, HAN D S, ZHANG R, et al. Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections[J]. J Adv Res, 2021, 38: 201-212. |
6 | BLAUWKAMP T A, THAIR S, ROSEN M J, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease[J]. Nat Microbiol, 2019, 4(4): 663-674. |
7 | QU J M, ZHANG J, CHEN Y, et al. Aetiology of severe community acquired pneumonia in adults identified by combined detection methods: a multi-centre prospective study in China[J]. Emerg Microbes Infect, 2022, 11(1): 556-566. |
8 | HOGAN C A, YANG S X, GARNER O B, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study[J]. Clin Infect Dis, 2021, 72(2): 239-245. |
9 | GU W, DENG X D, LEE M, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids[J]. Nat Med, 2021, 27(1): 115-124. |
10 | UNAL I. Defining an optimal cut-point value in ROC analysis: an alternative approach[J]. Comput Math Methods Med, 2017, 2017: 3762651. |
11 | JING C D, CHEN H B, LIANG Y, et al. Clinical evaluation of an improved metagenomic next-generation sequencing test for the diagnosis of bloodstream infections[J]. Clin Chem, 2021, 67(8): 1133-1143. |
12 | ZHU Y Q, GAN M Y, GE M M, et al. Diagnostic performance and clinical impact of metagenomic next-generation sequencing for pediatric infectious diseases[J]. J Clin Microbiol, 2023, 61(6): e0011523. |
13 | CHEN H B, YIN Y Y, GAO H, et al. Clinical utility of in-house metagenomic next-generation sequencing for the diagnosis of lower respiratory tract infections and analysis of the host immune response[J]. Clin Infect Dis, 2020, 71(Suppl 4): S416-S426. |
14 | MIAO Q, MA Y Y, WANG Q Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice[J]. Clin Infect Dis, 2018, 67(suppl_2): S231-S240. |
15 | QIAN Y Y, WANG H Y, ZHOU Y, et al. Improving pulmonary infection diagnosis with metagenomic next generation sequencing[J]. Front Cell Infect Microbiol, 2020, 10: 567615. |
16 | ZUO Y H, WU Y X, HU W P, et al. The clinical impact of metagenomic next-generation sequencing (mNGS) test in hospitalized patients with suspected sepsis: a multicenter prospective study[J]. Diagnostics (Basel), 2023, 13(2): 323. |
17 | WILSON M R, SAMPLE H A, ZORN K C, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis[J]. N Engl J Med, 2019, 380(24): 2327-2340. |
18 | ROSSOFF J, CHAUDHURY S, SONEJI M, et al. Noninvasive diagnosis of infection using plasma next-generation sequencing: a single-center experience[J]. Open Forum Infect Dis, 2019, 6(8): ofz327. |
19 | LIN P C, CHEN Y, SU S S, et al. Diagnostic value of metagenomic next-generation sequencing of bronchoalveolar lavage fluid for the diagnosis of suspected pneumonia in immunocompromised patients[J]. BMC Infect Dis, 2022, 22(1): 416. |
20 | SEYMOUR C W, GESTEN F, PRESCOTT H C, et al. Time to treatment and mortality during mandated emergency care for sepsis[J]. N Engl J Med, 2017, 376(23): 2235-2244. |
21 | BAGHDADI J D, BROOK R H, USLAN D Z, et al. Association of a care bundle for early sepsis management with mortality among patients with hospital-onset or community-onset sepsis[J]. JAMA Intern Med, 2020, 180(5): 707-716. |
22 | RHEE C, JONES T M, HAMAD Y, et al. Prevalence, underlying causes, and preventability of sepsis-associated mortality in US acute care hospitals[J]. JAMA Netw Open, 2019, 2(2): e187571. |
23 | STRATTON C W, SCHUTZBANK T E, TANG Y W. Use of metagenomic next-generation sequencing in the clinical microbiology laboratory: a step forward, but not an end-all[J]. J Mol Diagn, 2021, 23(11): 1415-1421. |
[1] | SONG Chenlu, XIANG Jun, YANG Huizhong. Early alarming effect of serum heparin-binding protein on prognosis and occurrence of sepsis in severely burned patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 474-481. |
[2] | WANG Qing, HAN Xiao, ZHANG Xiaobo. Research progress of immune response regulated by epigenetic modification in pneumonia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 931-938. |
[3] | JIANG Chunyu, GUO Xiaokui, QIN Jinhong. Research advances in CRISPR-Cas systems and anti-CRISPR protein families in Klebsiella pneumoniae [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1757-1765. |
[4] | Li-sha LI, Jian-hui LI, Bin HE, Nan-nan WU, Tong-yu ZHU, Xiao-kui GUO, Zheng-hong CHEN. Clinical application and effect of phage on the treatment of pulmonary infection by pan-drug resistant Klebsiella pneumoniae [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1272-1276. |
[5] | Li ZHU, Yun LI, Hui-qin XI, Wei-jun WANG, Fei CHEN, Zhan-ting LU, Ling XIA, Meng-dian ZHAN, Tian-yao ZHANG. Airway management in a critically ill patient with novel coronavirus pneumonia undergoing extracorporeal membrane oxygenation [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 406-408. |
[6] | TANG Xiao-meng1, 2, REN Yu-qian1, XIONG Xi1, 2, MIAO Hui-jie1, SHAO Lu-jing1, 2, CUI Yun1, ZHANG Yu-cai 1, 2, WANG Chun-xia1, 2. Clinical value of fibroblast growth factor 19 in predicting gastrointestinal dysfunction in children with sepsis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1236-1242. |
[7] | ZOU Chen1, 2, XU Run-hao1, 3, ZHANG Hong2, MA Zhan2, CHEN Li2, ZHANG Jie3, LI Min3, ZHANG Shu-lin1. Potential roles of small metabolites in the differential diagnosis between lung cancer and pneumonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1041-1047. |
[8] | ZHU Wei-jun1, MA Jin1, CUI Wen-bin2, YUAN Su-wei1. New grey correlation and degree of structure variation analysis of hospitalization cost of childhood pneumonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 666-670. |
[9] | GUAN Hong-yan, LIU Jing-xian, LIU Ying. Virulence genes of Klebsiella pneumoniae isolated blood cultures and clinical characteristics of the patients [J]. , 2020, 40(2): 235-. |
[10] | RUAN Xin1, ZHANG Ying-ting1, HAN Ke-qi1, LIN Long-shuai2, CHEN Chen1, YUE Ming1, WANG Chu-qiao1, SUN Ying-gang3, ZHAO Qing-hua2, HE Ming1. SIRT7 protecting hepatocytes LPS or D-GalN/LPS-induced apoptosisattenuating endoplasmic reticulum stress via inactivation of GRP78 [J]. , 2019, 39(8): 812-. |
[11] | Lü Lin, SHI Xin, GUO Xiao-kui, QIN Jin-hong. Isolation, biological characteristics and genomic safety assessment of drug-resistant Klebsiella pneumoniae phage JD902 [J]. , 2019, 39(12): 1389-. |
[12] | ZHAO Yi-si1, YU Ying-xi1, LIN Shi-hui2, XU Fang1, 2. Advances in the study of T cell immunity in invasive fungal infections secondary to sepsis [J]. , 2019, 39(11): 1325-. |
[13] | WU Guang-xi, SHI Xue-yin, HE Bin. Development of vaccines for prevention of Klebsiella pneumoniae [J]. , 2018, 38(4): 458-. |
[14] | XU Yao, MA Shuai, DING Feng . Progress of antimicrobial peptides in the treatment of sepsis#br# [J]. , 2017, 37(8): 1161-. |
[15] | LIU Yang, ZHENG Dan-dan, HAN Yi-chao, SHI Wei-yang, DAI Er-kuan, LI Min, ZHENG Bing. High-risk factors of infection of multidrug resistance Klebsiella pneumonia and analysis of therapeutic effects#br# [J]. , 2017, 37(7): 973-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||