
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (2): 241-245.doi: 10.3969/j.issn.1674-8115.2021.02.018
• Review • Previous Articles Next Articles
Received:2020-02-14
Online:2021-02-28
Published:2021-02-28
Contact:
Chen ZHANG
E-mail:zenan_wu@163.com;zhangchen645@gmail.com
Supported by:CLC Number:
Ze-nan WU, Chen ZHANG. Research advances in inflammatory mechanism of anhedonia[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 241-245.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.02.018
| 1 | Kendler KS. The phenomenology of major depression and the representativeness and nature of DSM criteria[J]. Am J Psychiatry, 2016, 173(8): 771-780. |
| 2 | Bennik EC, Nederhof E, Ormel J, et al. Anhedonia and depressed mood in adolescence: course, stability, and reciprocal relation in the TRAILS study[J]. Eur Child Adolesc Psychiatry, 2014, 23(7): 579-586. |
| 3 | Winer ES, Nadorff MR, Ellis TE, et al. Anhedonia predicts suicidal ideation in a large psychiatric inpatient sample[J]. Psychiatry Res, 2014, 218(1-2): 124-128. |
| 4 | Barch DM, Whalen D, Gilbert K, et al. Neural indicators of anhedonia: predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression[J]. Biol Psychiatry, 2019, 85(10): 863-871. |
| 5 | Felger JC, Li Z, Haroon E, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression[J]. Mol Psychiatry, 2016, 21(10): 1358-1365. |
| 6 | Boyle CC, Kuhlman KR, Dooley LN, et al. Inflammation and dimensions of reward processing following exposure to the influenza vaccine[J]. Psychoneuroendocrinology, 2019, 102: 16-23. |
| 7 | Murakami Y, Ishibashi T, Tomita E, et al. Depressive symptoms as a side effect of Interferon-α therapy induced by induction of indoleamine 2, 3-dioxygenase 1[J]. Sci Rep, 2016, 6: 29920. |
| 8 | Bergamini G, Mechtersheimer J, Azzinnari D, et al. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice[J]. Neurobiol Stress, 2018, 8: 42-56. |
| 9 | Rømer Thomsen K, Whybrow PC, Kringelbach ML. Reconceptualizing anhedonia: novel perspectives on balancing the pleasure networks in the human brain[J]. Front Behav Neurosci, 2015, 9: 49. |
| 10 | Zhang B, Lin P, Shi HQ, et al. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis[J]. Brain Imaging Behav, 2016, 10(3): 920-939. |
| 11 | Freed RD, Mehra LM, Laor D, et al. Anhedonia as a clinical correlate of inflammation in adolescents across psychiatric conditions[J]. World J Biol Psychiatry, 2019, 20(9): 712-722. |
| 12 | Szczypiński JJ, Gola M. Dopamine dysregulation hypothesis: the common basis for motivational anhedonia in major depressive disorder and schizophrenia?[J]. Rev Neurosci, 2018, 29(7): 727-744. |
| 13 | Wenzel JM, Cheer JF. Endocannabinoid regulation of reward and reinforcement through interaction with dopamine and endogenous opioid signaling[J]. Neuropsychopharmacology, 2018, 43(1): 103-115. |
| 14 | Yan C, Yang T, Yu QJ, et al. Rostral medial prefrontal dysfunctions and consummatory pleasure in schizophrenia: a meta-analysis of functional imaging studies[J]. Psychiatry Res, 2015, 231(3): 187-196. |
| 15 | Der-Avakian A, D'Souza MS, Potter DN, et al. Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats[J]. Psychopharmacology (Berl), 2017, 234(9-10): 1603-1614. |
| 16 | Yin LJ, Xu XD, Chen G, et al. Inflammation and decreased functional connectivity in a widely-distributed network in depression: centralized effects in the ventral medial prefrontal cortex[J]. Brain Behav Immun, 2019, 80: 657-666. |
| 17 | Felger JC, Mun J, Kimmel HL, et al. Chronic interferon-α decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates[J]. Neuropsychopharmacology, 2013, 38(11): 2179-2187. |
| 18 | Felger JC, Hernandez CR, Miller AH. Levodopa reverses cytokine-induced reductions in striatal dopamine release[J]. Int J Neuropsychopharmacol, 2015, 18(4): pyu084. |
| 19 | Kim H, Chen L, Lim G, et al. Brain indoleamine 2, 3-dioxygenase contributes to the comorbidity of pain and depression[J]. J Clin Invest, 2012, 122(8): 2940-2954. |
| 20 | Salazar F, Hall L, Negm OH, et al. The mannose receptor negatively modulates the Toll-like receptor 4-aryl hydrocarbon receptor-indoleamine 2, 3-dioxygenase axis in dendritic cells affecting T helper cell polarization[J]. J Allergy Clin Immunol, 2016, 137(6): 1841-1851.e2. |
| 21 | Rodrigues FTS, de Souza MRM, Lima CNC, et al. Major depression model induced by repeated and intermittent lipopolysaccharide administration: long-lasting behavioral, neuroimmune and neuroprogressive alterations[J]. J Psychiatr Res, 2018, 107: 57-67. |
| 22 | Xie W, Cai L, Yu YH, et al. Activation of brain indoleamine 2, 3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy[J]. J Neuroinflammation, 2014, 11: 41. |
| 23 | Walker AK, Budac DP, Bisulco S, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice[J]. Neuropsychopharmacology, 2013, 38(9): 1609-1616. |
| 24 | Laumet G, Zhou WJ, Dantzer R, et al. Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain[J]. Brain Behav Immun, 2017, 66: 94-102. |
| 25 | Schwarz MJ, Guillemin GJ, Teipel SJ, et al. Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer's disease patients from controls[J]. Eur Arch Psychiatry Clin Neurosci, 2013, 263(4): 345-352. |
| 26 | Monteggia LM, Gideons E, Kavalali ET. The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine[J]. Biol Psychiatry, 2013, 73(12): 1199-1203. |
| 27 | Gill JS, Jamwal S, Kumar P, et al. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington's like symptoms in rats: possible neurotransmitters modulation[J]. Pharmacol Rep, 2017, 69(2): 306-313. |
| 28 | Haroon E, Chen XC, Li ZH, et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia[J]. Transl Psychiatry, 2018, 8(1): 189. |
| 29 | Beggiato S, Tanganelli S, Fuxe K, et al. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex[J]. Neuropharmacology, 2014, 82: 11-18. |
| 30 | Savitz J, Drevets WC, Smith CM, et al. Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder[J]. Neuropsychopharmacology, 2015, 40(2): 463-471. |
| 31 | Vichaya EG, Laumet G, Christian DL, et al. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2, 3 dioxygenase[J]. Neuropsychopharmacology, 2019, 44(2): 364-371. |
| 32 | Antoniades C, Cunnington C, Antonopoulos A, et al. Induction of vascular GTP-cyclohydrolase Ⅰ and endogenous tetrahydrobiopterin synthesis protect against inflammation-induced endothelial dysfunction in human atherosclerosis[J]. Circulation, 2011, 124(17): 1860-1870. |
| 33 | Strasser B, Sperner-Unterweger B, Fuchs D, et al. Mechanisms of inflammation-associated depression: immune influences on tryptophan and phenylalanine metabolisms[J]. Curr Top Behav Neurosci, 2017, 31: 95-115. |
| 34 | Neurauter G, Schröcksnadel K, Scholl-Bürgi S, et al. Chronic immune stimulation correlates with reduced phenylalanine turnover[J]. Curr Drug Metab, 2008, 9(7): 622-627. |
| 35 | Capuron L, Schroecksnadel S, Féart C, et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms[J]. Biol Psychiatry, 2011, 70(2): 175-182. |
| 36 | Felger JC, Li L, Marvar PJ, et al. Tyrosine metabolism during interferon-α administration: association with fatigue and CSF dopamine concentrations[J]. Brain Behav Immun, 2013, 31: 153-160. |
| 37 | Haruki H, Hovius R, Pedersen MG, et al. Tetrahydrobiopterin biosynthesis as a potential target of the kynurenine pathway metabolite xanthurenic acid[J]. J Biol Chem, 2016, 291(2): 652-657. |
| 38 | Sas K, Szabó E, Vécsei L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection[J]. Molecules, 2018, 23(1): E191. |
| 39 | Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine[J]. Neuropsychopharmacology, 2017, 42(1): 216-241. |
| [1] | KERANMU Saitierguli, QIAN Lei, DING Siyi, MAHELIMUHAN Hanati, YANG Xueer, JIA Hao. Research progress of arginine metabolism in the regulation of mesenchymal stem cell function [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(7): 910-915. |
| [2] | ZHAO Xinyu, ZHANG Wenchao, CHEN Xuzhuo, SONG Jiaqi, HUANG Hui, ZHANG Shanyong. Study on the effects of spermidine on LPS-induced inflammatory osteolysis in mouse calvaria [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 673-683. |
| [3] | YANG Le, ZHOU Yi, WANG Keyun, LAI Yali. Research on the improvement of cognitive impairment, endoplasmic reticulum stress and neuroinflammation in Alzheimer's disease by emodin [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 727-734. |
| [4] | YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638. |
| [5] | WAN Hongjin, HU Yibin, WANG Xin, ZHANG Kai, QIN An, MA Peixiang, MA Hui, ZHAO Jie. Neferine alleviates intervertebral disc degeneration through KEAP1/NRF2/GPX4 and NF-κB signaling pathways [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(3): 261-270. |
| [6] | WANG Xiaohong, FANG Yiru. Research progress on the neuroinflammation mechanisms in bipolar disorder [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(1): 107-112. |
| [7] | CHEN Minghao, LIU Peiyu, WANG Xuan, WU Yixiang, JIANG Yujin, ZHANG Chaoyang, ZHANG Jingfa. Advances in drug therapy of diabetic retinopathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 822-829. |
| [8] | ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 779-787. |
| [9] | HUANG Xinxin, LIU Chao, LÜ Qinyu, HU Guoqin, BAO Chenxi, ZHANG Yao, YI Zhenghui. Relationship between polymorphic interaction of glutamate pathway genes and anhedonia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 576-583. |
| [10] | ZHENG Mengyi, MAO Jialiang, ZOU Zhiguo, ZHANG Ruilei, ZHANG Hou, LI Shiguang. Predictive value of systemic immune inflammation index and somatic symptom scale-China in the occurrence of in-hospital major adverse cardiovascular events after first-episode of acute myocardial infarction undergoing PCI [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 334-341. |
| [11] | LIU Yonghui, TANG Li, LIANG Taigang, ZHANG Jian, FENG Li. Research progress in the role of SIRT6 in aging and metabolism [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(11): 1439-1446. |
| [12] | ZHU Siyu, DONG Xiaoyan. New insights in small airway dysfunction of childhood asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 500-506. |
| [13] | WU Zhaoyu, XU Zhijue, PU Hongji, WANG Xin, LU Xinwu. Physiological function of nerve injury-induced protein 1 and its role in relevant diseases [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 358-364. |
| [14] | XIE Shasha, LÜ Yehui, LIN Jian. Application and research progress of tetrahedral framework nucleic acids in the field of medicine [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 380-384. |
| [15] | GUO Liqiang, ZHAO Shitian, SHU Bing. Research progress in the roles of Notch signaling pathway during fracture healing [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 222-229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
