
JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2022, Vol. 42 ›› Issue (1): 82-89.doi: 10.3969/j.issn.1674-8115.2022.01.012
• Clinical research • Previous Articles Next Articles
Yu ZHANG1(
), Xiaoyuan WU2(
), Lihua GUAN3, Yiyuan LIU4, Xingyue PENG4, Haiyan XIE1, Wei HU1, Keke HAO1, Ning XIA1, Guojun LU1, Zhibo HOU1
Received:2021-08-04
Online:2022-01-28
Published:2022-01-28
Contact:
Yu ZHANG
E-mail:zhangyu2113_nj@163.com
Supported by:CLC Number:
Yu ZHANG, Xiaoyuan WU, Lihua GUAN, Yiyuan LIU, Xingyue PENG, Haiyan XIE, Wei HU, Keke HAO, Ning XIA, Guojun LU, Zhibo HOU. Application of high-throughput drug sensitivity screening system in the treatment of non-small cell lung cancer with malignant pleural effusion[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(1): 82-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.01.012
Fig 3 Heat map and hierarchical clustering analysis of the killing efficiency of 30 drugs in primary tumor cells cultured from 30 MPE patients with NSCLC
| Sample | Gender | Age /year | Therapy line | Histology | EGFR/ALK/ ROS1 testing | Treatment | Clinical efficacy | High-throughput drug sensitivity test in vitro | Consistency analysis |
|---|---|---|---|---|---|---|---|---|---|
| S1 | Male | 72 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Gefitinib resistance | Inconsistent |
| S3 | Female | 48 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Gefitinib resistance | Inconsistent |
| S4 | Female | 78 | 1 | Adenocarcinoma | Negative | Pemetrexed + Carboplatin | SD | Low sensitive to Pemetrexed and Carboplatin | Consistent |
| S5 | Female | 48 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Low sensitive to Gefitinib | Consistent |
| S7 | Female | 48 | 1 | Adenocarcinoma | Negative | Pemetrexed + Cisplatin + Bevacizumab | PR | Low sensitive to Pemetrexed and Cisplatin | Consistent |
| S10 | Female | 60 | 1 | Adenocarcinoma | Negative | Pemetrexed + Carboplatin | SD | Low sensitive to Pemetrexed and Carboplatin | Consistent |
| S15 | Female | 67 | 1 | Adenocarcinoma | Negative | Pemetrexed + Cisplatin | PR | Resistant to Pemetrexed and Cisplatin | Inconsistent |
| S16 | Male | 63 | 1 | Adenocarcinoma | EGFR21L858R | Gefitinib | SD | Low sensitive to Gefitinib | Consistent |
| S19 | Male | 74 | 1 | Adenosquamous | Negative | Docetaxel + Nedaplatin | SD | Low sensitive to Docetaxel and Nedaplatin | Consistent |
| S20 | Female | 57 | 1 | Adenocarcinoma | EGFR19DEL | Afatinib | PR | Afatinib resistance | Inconsistent |
| S23 | Male | 65 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Gefitinib resistance | Inconsistent |
| S24 | Male | 77 | 1 | Adenocarcinoma | Negative | Pemetrexed + Carboplatin | SD | Resistant to Pemetrexed and Carboplatin | Inconsistent |
| S25 | Male | 74 | 1 | Adenocarcinoma | EGFR21L858R | Gefitinib | PR | Moderate sensitive to Gefitinib | Consistent |
| S26 | Female | 66 | 1 | Adenocarcinoma | EGFR21L861Q | Afatinib | PR | Low sensitive to Afatinib | Consistent |
| S27 | Male | 92 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | SD | Gefitinib resistance | Inconsistent |
| S8 | Male | 45 | 3 | Adenocarcinoma | Negative | Vinorelbine + Lobaplatin | SD | Low sensitive to Vinorelbine, moderate sensitive to Lobaplatin | Consistent |
| S11 | Female | 48 | 3 | Adenocarcinoma | EGFR19DEL | Pemetrexed + Carboplatin + Bevacizumab | PR | Moderate sensitive to Pemetrexed and Carboplatin | Consistent |
| S13 | Male | 55 | 2 | Squamous | Negative | Gemcitabine + Nedaplatin | SD | Moderate sensitive to Gemcitabine, low sensitive to Nedaplatin | Consistent |
| S14 | Female | 82 | 3 | Adenocarcinoma | EGFR21L858R/T790M/C797S(trans) | S1+Anlotinib | SD | Low sensitive to Tegafur and Nintedanib | Consistent |
| S18 | Male | 72 | 3 | Squamous | Negative | S1 | SD | Low sensitive to Tegafur | Consistent |
| S21 | Male | 45 | 5 | Adenocarcinoma | EGFR19DEL/ T790M/C797S(trans) | Gemcitabine + Lobaplatin | PR | High sensitive to Gemcitabine, moderate sensitive to Lobaplatin | Consistent |
| S22 | Female | 71 | 3 | Adenocarcinoma | EGFR21L858R/T790M/C797S(trans) | Pemetrexed + Carboplatin +Bevacizumab | PR | Moderate sensitive to Pemetrexed and Carboplatin | Consistent |
| S29 | Female | 60 | 3 | Adenocarcinoma | EGFR21L858R+BRAF V600E | Pemetrexed + Carboplatin | PD | Resistant to Pemetrexed and Carboplatin | Consistent |
Tab 1 Clinical characteristics of 23 NSCLC patients with evaluable clinical efficacy and the consistency between the results of high-throughput drug sensitivity test in vitro and the clinical efficacy
| Sample | Gender | Age /year | Therapy line | Histology | EGFR/ALK/ ROS1 testing | Treatment | Clinical efficacy | High-throughput drug sensitivity test in vitro | Consistency analysis |
|---|---|---|---|---|---|---|---|---|---|
| S1 | Male | 72 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Gefitinib resistance | Inconsistent |
| S3 | Female | 48 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Gefitinib resistance | Inconsistent |
| S4 | Female | 78 | 1 | Adenocarcinoma | Negative | Pemetrexed + Carboplatin | SD | Low sensitive to Pemetrexed and Carboplatin | Consistent |
| S5 | Female | 48 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Low sensitive to Gefitinib | Consistent |
| S7 | Female | 48 | 1 | Adenocarcinoma | Negative | Pemetrexed + Cisplatin + Bevacizumab | PR | Low sensitive to Pemetrexed and Cisplatin | Consistent |
| S10 | Female | 60 | 1 | Adenocarcinoma | Negative | Pemetrexed + Carboplatin | SD | Low sensitive to Pemetrexed and Carboplatin | Consistent |
| S15 | Female | 67 | 1 | Adenocarcinoma | Negative | Pemetrexed + Cisplatin | PR | Resistant to Pemetrexed and Cisplatin | Inconsistent |
| S16 | Male | 63 | 1 | Adenocarcinoma | EGFR21L858R | Gefitinib | SD | Low sensitive to Gefitinib | Consistent |
| S19 | Male | 74 | 1 | Adenosquamous | Negative | Docetaxel + Nedaplatin | SD | Low sensitive to Docetaxel and Nedaplatin | Consistent |
| S20 | Female | 57 | 1 | Adenocarcinoma | EGFR19DEL | Afatinib | PR | Afatinib resistance | Inconsistent |
| S23 | Male | 65 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | PR | Gefitinib resistance | Inconsistent |
| S24 | Male | 77 | 1 | Adenocarcinoma | Negative | Pemetrexed + Carboplatin | SD | Resistant to Pemetrexed and Carboplatin | Inconsistent |
| S25 | Male | 74 | 1 | Adenocarcinoma | EGFR21L858R | Gefitinib | PR | Moderate sensitive to Gefitinib | Consistent |
| S26 | Female | 66 | 1 | Adenocarcinoma | EGFR21L861Q | Afatinib | PR | Low sensitive to Afatinib | Consistent |
| S27 | Male | 92 | 1 | Adenocarcinoma | EGFR19DEL | Gefitinib | SD | Gefitinib resistance | Inconsistent |
| S8 | Male | 45 | 3 | Adenocarcinoma | Negative | Vinorelbine + Lobaplatin | SD | Low sensitive to Vinorelbine, moderate sensitive to Lobaplatin | Consistent |
| S11 | Female | 48 | 3 | Adenocarcinoma | EGFR19DEL | Pemetrexed + Carboplatin + Bevacizumab | PR | Moderate sensitive to Pemetrexed and Carboplatin | Consistent |
| S13 | Male | 55 | 2 | Squamous | Negative | Gemcitabine + Nedaplatin | SD | Moderate sensitive to Gemcitabine, low sensitive to Nedaplatin | Consistent |
| S14 | Female | 82 | 3 | Adenocarcinoma | EGFR21L858R/T790M/C797S(trans) | S1+Anlotinib | SD | Low sensitive to Tegafur and Nintedanib | Consistent |
| S18 | Male | 72 | 3 | Squamous | Negative | S1 | SD | Low sensitive to Tegafur | Consistent |
| S21 | Male | 45 | 5 | Adenocarcinoma | EGFR19DEL/ T790M/C797S(trans) | Gemcitabine + Lobaplatin | PR | High sensitive to Gemcitabine, moderate sensitive to Lobaplatin | Consistent |
| S22 | Female | 71 | 3 | Adenocarcinoma | EGFR21L858R/T790M/C797S(trans) | Pemetrexed + Carboplatin +Bevacizumab | PR | Moderate sensitive to Pemetrexed and Carboplatin | Consistent |
| S29 | Female | 60 | 3 | Adenocarcinoma | EGFR21L858R+BRAF V600E | Pemetrexed + Carboplatin | PD | Resistant to Pemetrexed and Carboplatin | Consistent |
| 1 | BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
| 2 | SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30. |
| 3 | BURROWS C M, MATHEWS W C, COLT H G. Predicting survival in patients with recurrent symptomatic malignant pleural effusions: an assessment of the prognostic values of physiologic, morphologic, and quality of life measures of extent of disease[J]. Chest, 2000, 117(1): 73-78. |
| 4 | CUFER T, KNEZ L. Update on systemic therapy of advanced non-small-cell lung cancer[J]. Expert Rev Anticancer Ther, 2014, 14(10): 1189-1203. |
| 5 | SZULKIN A, OTVÖS R, HILLERDAL C O, et al. Characterization and drug sensitivity profiling of primary malignant mesothelioma cells from pleural effusions[J]. BMC Cancer, 2014, 14: 709. |
| 6 | ÖTVÖS R, SZULKIN A, HILLERDAL C O, et al. Drug sensitivity profiling and molecular characteristics of cells from pleural effusions of patients with lung adenocarcinoma[J]. Genes Cancer, 2015, 6(3/4): 119-128. |
| 7 | 中国临床肿瘤学会指南工作委员会组织. 中国临床肿瘤学会(CSCO)原发性肺癌诊疗指南-2019[M]. 北京: 人民卫生出版社, 2019. |
| 8 | LEE S H. Chemotherapy for lung cancer in the era of personalized medicine[J]. Tuberc Respir Dis (Seoul), 2019, 82(3): 179-189. |
| 9 | FRIBOULET L, OLAUSSEN K A, PIGNON J P, et al. ERCC1 isoform expression and DNA repair in non-small-cell lung cancer[J]. N Engl J Med, 2013, 368(12): 1101-1110. |
| 10 | OLAUSSEN K A, POSTEL-VINAY S. Predictors of chemotherapy efficacy in non-small-cell lung cancer: a challenging landscape[J]. Ann Oncol, 2016, 27(11): 2004-2016. |
| 11 | SEUFFERLEIN T, AHN J, KRNDIJA D, et al. Tumor biology and cancer therapy: an evolving relationship[J]. Cell Commun Signal, 2009, 7: 19. |
| 12 | BEN-DAVID U, SIRANOSIAN B, HA G, et al. Genetic and transcriptional evolution alters cancer cell line drug response[J]. Nature, 2018, 560(7718): 325-330. |
| 13 | JIN K T, TENG L S, SHEN Y P, et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review[J]. Clin Transl Oncol, 2010, 12(7): 473-480. |
| 14 | FULCHER M L, RANDELL S H. Human nasal and tracheo-bronchial respiratory epithelial cell culture[J]. Methods Mol Biol, 2013, 945: 109-121. |
| 15 | WILDING J L, BODMER W F. Cancer cell lines for drug discovery and development[J]. Cancer Res, 2014, 74(9): 2377-2384. |
| 16 | BYRNE A T, ALFÉREZ D G, AMANT F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4): 254-268. |
| 17 | GAO H, KORN J M, FERRETTI S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nat Med, 2015, 21(11): 1318-1325. |
| 18 | ROSSI G, MANFRIN A, LUTOLF M P. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11): 671-687. |
| 19 | DE WETERING MVAN, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945. |
| 20 | CUNDERLÍKOVÁ B. Issues to be considered when studying cancer in vitro[J]. Crit Rev Oncol Hematol, 2013, 85(2): 95-111. |
| 21 | YIN S Y, XI R B, WU A W, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy[J]. Sci Transl Med, 2020, 12(549): eaaz1723. |
| 22 | MARKASZ L, KIS L L, STUBER G, et al. Hodgkin-lymphoma-derived cells show high sensitivity to dactinomycin and paclitaxel[J]. Leuk Lymphoma, 2007, 48(9): 1835-1845. |
| 23 | SKRIBEK H, OTVOS R, FLABERG E, et al. Chronic lymphoid leukemia cells are highly sensitive to the combination of prednisolone and daunorubicin, but much less to doxorubicin or epirubicin[J]. Exp Hematol, 2010, 38(12): 1219-1230. |
| 24 | DEDINSZKI D, KISS A, MÁRKÁSZ L, et al. Inhibition of protein phosphatase-1 and-2A decreases the chemosensitivity of leukemic cells to chemotherapeutic drugs[J]. Cell Signal, 2015, 27(2): 363-372. |
| 25 | MANCINI R, GIARNIERI E, DE VITIS C, et al. Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment[J]. PLoS One, 2011, 6(7): e21320. |
| 26 | SZULKIN A, NILSONNE G, MUNDT F, et al. Variation in drug sensitivity of malignant mesothelioma cell lines with substantial effects of selenite and bortezomib, highlights need for individualized therapy[J]. PLoS One, 2013, 8(6): e65903. |
| 27 | ROSCILLI G, DE VITIS C, FERRARA F F, et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity[J]. J Transl Med, 2016, 14: 61. |
| 28 | ALIZADEH A A, ARANDA V, BARDELLI A, et al. Toward understanding and exploiting tumor heterogeneity[J]. Nat Med, 2015, 21(8): 846-853. |
| 29 | 王丹. 高通量体外药敏检测技术在晚期肺癌伴恶性胸水中的临床研究[D]. 合肥: 安徽医科大学, 2018: 1-41. |
| 30 | 中华医学会, 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2018版)[J]. 中华肿瘤杂志, 2018, 40(12): 935-964. |
| [1] | ZHANG Xianzhou, DU Fenglin, WU Lei, REN Yizhe, ZHAO Mingna, LOU Jiatao. Mechanistic study of OGT-promoted non-small cell lung cancer proliferation via the ERK signaling pathway [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(10): 1288-1297. |
| [2] | ZHU Mingyang, XU Yuanyuan, REN Jianghao, HUANG Jiazheng, LI Ruonan, TAN Qiang. Review of sublobar resection for lung adenocarcinoma with ground-glass presence [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 922-927. |
| [3] | WANG Mengting, CHEN Yinan, XUANYUAN Xinyang, YUAN Haihua. Construction and experimental validation of mouse PDX model by malignant pleural effusion-derived tumor cells from lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 435-443. |
| [4] | LIU Chenxi, HAN Lin, YANG Yi, ZHOU Han, LIU Yayun, SHENG Deqiao. GPR87 promotes invasion and migration through the RHO/ROCK pathway in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1514-1525. |
| [5] | HUANG Huayan, XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun. Advances in immunotherapy of advanced non-small cell lung cancer with EGFR mutation [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 611-618. |
| [6] | ZHAO Zhuoming, LIU Zhenhao, LU Manman, ZHANG Yu, XU Linfeng, XIE Lu. Analysis of tumor-related features of non-small cell lung cancer based on TCR repertoire workflow [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(12): 1520-1528. |
| [7] | LIAO Yahui, LIU Liyun, ZHU Hongrui, LIN Houwen, YAN Jizhou, SUN Fan. Marine sponge-derived smenospongine overcomes resistance of cisplatin via inhibiting EGFR-Akt-ABCG2 pathway in NSCLC cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 997-1007. |
| [8] | LIU Ziyang, WANG Xiaowen, CHEN Li. lncRNA GK-IT1 influences the carcinogenesis of non-small cell lung cancer cells through regulating aldolase A [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(5): 591-601. |
| [9] | LU Wenqing, MENG Zhouwenli, YU Yongfeng, LU Shun. Resistance mechanisms and overcoming strategies of the third-generation EGFR-TKI in non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(4): 535-544. |
| [10] | LI Ruonan, CHEN Xiaoke, XU Yuanyuan, TAN Qiang. Advances in postoperative adjuvant targeted therapy for patients with stage ⅠB-ⅢA non-small cell lung cancer [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(11): 1612-1619. |
| [11] | Yun-fang MA, Li-na PAN, Zhen LI, Bei-li GAO, Jia-an HU, Zhi-hong XU. Exploratory study on downregulation of PD-L1 in KRAS G12V-mutant non-small cell lung cancer cells by selumetinib [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 741-748. |
| [12] | QU Guo-jun1, LU Yuan-feng2, LI Yu1. Mechanism of CCT2, a new downstream substrate of PDGFRα, on proliferation of tumor cells [J]. , 2019, 39(1): 28-. |
| [13] | HE Ya-ping1, LOU Wei-qun2, CHEN Jie-ling2, ZHOU Zhen3, ZHU Jing-fen1, JIAN Hong3. Influencing factors for quality of life in patients over 12 months after diagnosis of non-small cell lung cancer [J]. , 2018, 38(7): 775-. |
| [14] | CHEN Lei, XIA Shu-yue. Therapeutic effect and safety of bevacizumab combined with cisplatin on malignant pleural effusion of patients with non-small cell lung cancer [J]. , 2015, 35(8): 1194-. |
| [15] | SHI Qin, CHEN Qun, XIE Qiang, et al. Effects of mRNA expressions of ERCC1, RRM1, TYMS, and TUBB3 of NSCLC patients with wild-type EGFR on efficacy and prognosis of chemotherapy [J]. , 2015, 35(7): 1010-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||