1 |
FRONTERA W R, OCHALA J. Skeletal muscle: a brief review of structure and function[J]. Calcif Tissue Int, 2015, 96(3): 183-195.
|
2 |
BAGHDADI M B, TAJBAKHSH S. Regulation and phylogeny of skeletal muscle regeneration[J]. Dev Biol, 2018, 433(2): 200-209.
|
3 |
HUARD J, LI Y, FU F H. Muscle injuries and repair: current trends in research[J]. J Bone Joint Surg Am, 2002, 84(5): 822-832.
|
4 |
BEHM D G, BLAZEVICH A J, KAY A D, et al. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review[J]. Appl Physiol Nutr Metab, 2016, 41(1): 1-11.
|
5 |
DALLE S, HIROUX C, POFFÉ C, et al. Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition[J]. J Muscle Res Cell Motil, 2020, 41(4): 375-387.
|
6 |
MATHES A L, LAFYATIS R. Role for Toll-like receptor 3 in muscle regeneration after cardiotoxin injury[J]. Muscle Nerve, 2011, 43(5): 733-740.
|
7 |
ZHOU S A, ZHANG W, CAI G H, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing tenascin-c during regeneration[J]. Cell Res, 2020, 30(12): 1063-1077.
|
8 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
|
9 |
CONRAD M, ANGELI J P F, VANDENABEELE P, et al. Regulated necrosis: disease relevance and therapeutic opportunities[J]. Nat Rev Drug Discov, 2016, 15(5): 348-366.
|
10 |
KAGAN V E, MAO G W, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.
|
11 |
DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98.
|
12 |
ANGELI J P F, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
|
13 |
INGOLD I, BERNDT C, SCHMITT S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e21.
|
14 |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
|
15 |
DEVISSCHER L, VAN COILLIE S, HOFMANS S, et al. Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy[J]. J Med Chem, 2018, 61(22): 10126-10140.
|
16 |
DIXON S J, STOCKWELL B R. The hallmarks of ferroptosis[J]. Annu Rev Cancer Biol, 2019, 3: 35-54.
|
17 |
JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
18 |
SOUSA-VICTOR P, GARCÍA-PRAT L, MUÑOZ-CÁNOVES P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2021. DOI: 10.1038/s41580-021-00421-2.
|
19 |
WANG H Y, HUANG Y L, YU M, et al. Muscle regeneration controlled by a designated DNA dioxygenase[J]. Cell Death Dis, 2021, 12(6): 535.
|
20 |
TIERNEY M T, GROMOVA A, SESILLO F B, et al. Autonomous extracellular matrix remodeling controls a progressive adaptation in muscle stem cell regenerative capacity during development[J]. Cell Rep, 2016, 14(8): 1940-1952.
|
21 |
TJONDROKOESOEMO A, SCHIPS T G, SARGENT M A, et al. Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice[J]. J Biol Chem, 2016, 291(19): 9920-9928.
|
22 |
MORGAN J E, PROLA A, MARIOT V, et al. Necroptosis mediates myofibre death in dystrophin-deficient mice[J]. Nat Commun, 2018, 9(1): 3655.
|
23 |
SREENIVASAN K, IANNI A, KÜNNE C, et al. Attenuated epigenetic suppression of muscle stem cell necroptosis is required for efficient regeneration of dystrophic muscles[J]. Cell Rep, 2020, 31(7): 107652.
|