Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (8): 1122-1130.doi: 10.3969/j.issn.1674-8115.2022.08.018
• Review • Previous Articles
LIN Jiayu(), QIN Jiejie, JIANG Lingxi()
Received:
2022-04-27
Accepted:
2022-07-27
Online:
2022-08-28
Published:
2022-10-08
Contact:
JIANG Lingxi
E-mail:lam_ljy@163.com;jlx12120@rjh.com.cn
Supported by:
CLC Number:
LIN Jiayu, QIN Jiejie, JIANG Lingxi. Progress in metabolism of the immune cells in tumor microenvironment[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1122-1130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.08.018
Immunity type | Cell type | Metabolic pathway | Reference |
---|---|---|---|
Innate immunity | |||
M1-type TAMs | PPP | [ | |
M2-type TAMs | OXPHOS, FAO | [ | |
TANs | Glycolysis | [ | |
NKs | Glycolysis, OXPHOS | [ | |
DCs | Glycolysis | [ | |
MDSCs | Glycolysis, OXPHOS | [ | |
Adaptive immunity | |||
Effector T cells | Glycolysis, lipid metabolism | [ | |
Tregs | Lipid metabolism, OXPHOS | [ | |
Effector B cells | Glycolysis, OXPHOS | [ |
Tab 1 Main immune cells and their main metabolic pathways in the tumor immune microenvironment
Immunity type | Cell type | Metabolic pathway | Reference |
---|---|---|---|
Innate immunity | |||
M1-type TAMs | PPP | [ | |
M2-type TAMs | OXPHOS, FAO | [ | |
TANs | Glycolysis | [ | |
NKs | Glycolysis, OXPHOS | [ | |
DCs | Glycolysis | [ | |
MDSCs | Glycolysis, OXPHOS | [ | |
Adaptive immunity | |||
Effector T cells | Glycolysis, lipid metabolism | [ | |
Tregs | Lipid metabolism, OXPHOS | [ | |
Effector B cells | Glycolysis, OXPHOS | [ |
1 | DEBERARDINIS R J, LUM J J, HATZIVASSILIOU G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation[J]. Cell Metab, 2008, 7(1): 11-20. |
2 | GUERRA L, BONETTI L, BRENNER D. Metabolic modulation of immunity: a new concept in cancer immunotherapy[J]. Cell Rep, 2020, 32(1): 107848. |
3 | DOMBLIDES C, LARTIGUE L, FAUSTIN B. Control of the antitumor immune response by cancer metabolism[J]. Cells, 2019, 8(2): 104. |
4 | BISWAS S K. Metabolic reprogramming of immune cells in cancer progression[J]. Immunity, 2015, 43(3): 435-449. |
5 | FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. |
6 | LEONE R D, POWELL J D. Metabolism of immune cells in cancer[J]. Nat Rev Cancer, 2020, 20(9): 516-531. |
7 | WARD P S, THOMPSON C B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate[J]. Cancer Cell, 2012, 21(3): 297-308. |
8 | CHANG C H, QIU J, O'SULLIVAN D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241. |
9 | BISWAS S K, ALLAVENA P, MANTOVANI A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions[J]. Semin Immunopathol, 2013, 35(5): 585-600. |
10 | MANTOVANI A, ALLAVENA P. The interaction of anticancer therapies with tumor-associated macrophages[J]. J Exp Med, 2015, 212(4): 435-445. |
11 | MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416. |
12 | DAI X M, LU L S, DENG S K, et al. USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer[J]. Theranostics, 2020, 10(20): 9332-9347. |
13 | QING J N, ZHANG Z Z, NOVÁK P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 917-926. |
14 | MOON J S, HISATA S, PARK M A, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation[J]. Cell Rep, 2015, 12(1): 102-115. |
15 | HASCHEMI A, KOSMA P, GILLE L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism[J]. Cell Metab, 2012, 15(6): 813-826. |
16 | VATS D, MUKUNDAN L, ODEGAARD J I, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation[J]. Cell Metab, 2006, 4(1): 13-24. |
17 | SU P, WANG Q, BI E G, et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages[J]. Cancer Res, 2020, 80(7): 1438-1450. |
18 | BANTUG G R, GALLUZZI L, KROEMER G, et al. The spectrum of T cell metabolism in health and disease[J]. Nat Rev Immunol, 2018, 18(1): 19-34. |
19 | RUFFELL B, COUSSENS L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472. |
20 | RODRÍGUEZ-ESPINOSA O, ROJAS-ESPINOSA O, MORENO-ALTAMIRANO M M B, et al. Metabolic requirements for neutrophil extracellular traps formation[J]. Immunology, 2015, 145(2): 213-224. |
21 | ANCEY P B, CONTAT C, BOIVIN G, et al. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy[J]. Cancer Res, 2021, 81(9): 2345-2357. |
22 | RICE C M, DAVIES L C, SUBLESKI J J, et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression[J]. Nat Commun, 2018, 9(1): 5099. |
23 | ISAACSON B, MANDELBOIM O. Sweet killers: NK cells need glycolysis to kill tumors[J]. Cell Metab, 2018, 28(2): 183-184. |
24 | LOFTUS R M, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice[J]. Nat Commun, 2018, 9(1): 2341. |
25 | HARMON C, ROBINSON M W, HAND F, et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis[J]. Cancer Immunol Res, 2019, 7(2): 335-346. |
26 | MICHELET X, DYCK L, HOGAN A, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses[J]. Nat Immunol, 2018, 19(12): 1330-1340. |
27 | KRAWCZYK C M, HOLOWKA T, SUN J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood, 2010, 115(23): 4742-4749. |
28 | EVERTS B, AMIEL E, HUANG S C C, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation[J]. Nat Immunol, 2014, 15(4): 323-332. |
29 | HERBER D L, CAO W, NEFEDOVA Y, et al. Lipid accumulation and dendritic cell dysfunction in cancer[J]. Nat Med, 2010, 16(8): 880-886. |
30 | CUBILLOS-RUIZ J R, SILBERMAN P C, RUTKOWSKI M R, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis[J]. Cell, 2015, 161(7): 1527-1538. |
31 | HOSSAIN F, AL-KHAMI A A, WYCZECHOWSKA D, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies[J]. Cancer Immunol Res, 2015, 3(11): 1236-1247. |
32 | DIAS A S, ALMEIDA C R, HELGUERO L A, et al. Metabolic crosstalk in the breast cancer microenvironment[J]. Eur J Cancer, 2019, 121: 154-171. |
33 | AL-KHAMI A A, ZHENG L Q, DEL VALLE L, et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells[J]. Oncoimmunology, 2017, 6(10): e1344804. |
34 | MICHALEK R D, GERRIETS V A, JACOBS S R, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011, 186(6): 3299-3303. |
35 | SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. |
36 | GELTINK R, KYLE R L, PEARCE E L. Unraveling the complex interplay between T cell metabolism and function[J]. Annu Rev Immunol, 2018, 36: 461-488. |
37 | WAICKMAN A T, POWELL J D. mTOR, metabolism, and the regulation of T-cell differentiation and function[J]. Immunol Rev, 2012, 249(1): 43-58. |
38 | FRAUWIRTH K A, RILEY J L, HARRIS M H, et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity, 2002, 16(6): 769-777. |
39 | HO P C, BIHUNIAK J D, MACINTYRE A N, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162(6): 1217-1228. |
40 | DE ROSA V, GALGANI M, PORCELLINI A, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants[J]. Nat Immunol, 2015, 16(11): 1174-1184. |
41 | HAAS R, SMITH J, ROCHER-ROS V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions[J]. PLoS Biol, 2015, 13(7): e1002202. |
42 | KUMAGAI S, KOYAMA S, ITAHASHI K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell, 2022, 40(2): 201-218.e9. |
43 | WATSON M J, VIGNALI P D A, MULLETT S J, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J]. Nature, 2021, 591(7851): 645-651. |
44 | KIDANI Y, ELSAESSER H, HOCK M B, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J]. Nat Immunol, 2013, 14(5): 489-499. |
45 | YANG W, BAI Y B, XIONG Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism[J]. Nature, 2016, 531(7596): 651-655. |
46 | WANG H P, FRANCO F, TSUI Y C, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors[J]. Nat Immunol, 2020, 21(3): 298-308. |
47 | ZENG H, YANG K, CLOER C, et al. mTORC1 couples immune signals and metabolic programming to establish Treg cell function[J]. Nature, 2013, 499(7459): 485-490. |
48 | TAKE Y, KOIZUMI S, NAGAHISA A. Prostaglandin E receptor 4 antagonist in cancer immunotherapy: mechanisms of action[J]. Front Immunol, 2020, 11: 324. |
49 | MUNN D H, SHARMA M D, BABAN B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase[J]. Immunity, 2005, 22(5): 633-642. |
50 | GEIGER R, RIECKMANN J C, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity[J]. Cell, 2016, 167(3): 829-842.e13. |
51 | BIAN YJ, LI W, KREMER D M, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation[J]. Nature, 2020, 585(7824): 277-282. |
52 | MOLLER S H, HSUEH P C, YU Y R, et al. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging [J]. Cell Metab, 2022, 34(3): 378-395. |
53 | LIU Y N, YANG J F, HUANG D J, et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways[J]. Front Immunol, 2020, 11: 1906. |
54 | HE J L, SHANGGUAN X, ZHOU W, et al. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development[J]. Nat Commun, 2021, 12(1): 4371. |
55 | SCHARPING N E, MENK A V, MORECI R S, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J]. Immunity, 2016, 45(2): 374-388. |
56 | KURAI J, CHIKUMI H, HASHIMOTO K, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines[J]. Clin Cancer Res, 2007, 13(5): 1552-1561. |
57 | PITZALIS C, JONES G W, BOMBARDIERI M, et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity[J]. Nat Rev Immunol, 2014, 14(7): 447-462. |
58 | CASSIM S, POUYSSEGUR J. Tumor microenvironment: a metabolic player that shapes the immune response[J]. Int J Mol Sci, 2019, 21(1): 157. |
59 | WATERS L R, AHSAN F M, WOLF D M, et al. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling[J]. iScience, 2018, 5: 99-109. |
60 | BROWN T P, GANAPATHY V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206: 107451. |
61 | KOUIDHI S, BEN AYED F, BENAMMAR ELGAAIED A. Targeting tumor metabolism: a new challenge to improve immunotherapy[J]. Front Immunol, 2018, 9: 353. |
62 | HALFORD S E R, JONES P, WEDGE S, et al. A first-in-human first-in-class (FIC) trial of the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with advanced solid tumours[J]. J Clin Oncol, 2017, 35(15_suppl): 2516. |
63 | OH M H, SUN I H, ZHAO L, et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells[J]. J Clin Invest, 2020, 130(7): 3865-3884. |
64 | LEONE R D, ZHAO L, ENGLERT J M, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021. |
65 | VOSS K, LUTHERS C R, POHIDA K, et al. Fatty acid synthase contributes to restimulation-induced cell death of human CD4 T cells[J]. Front Mol Biosci, 2019, 6: 106. |
66 | FALCHOOK G, INFANTE J, ARKENAU H T, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors[J]. EClinicalMedicine, 2021, 34: 100797. |
[1] | WANG Yuxin, SUN Ruiqi, LIU Jianhua, HE Weina. Development of pH-responsive fluorescent probe for tumor microenvironment imaging [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 875-884. |
[2] | Jing-wei LI, Li-wen WANG, Ling-xi JIANG, Qian ZHAN, Hao CHEN, Bai-yong SHEN. Review of immunosuppressive tumor microenvironment of pancreatic cancer [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1103-1108. |
[3] | ZHOU Han, YANG Xiao-sheng, LIAO Chen-long, ZHANG Wen-chuan. Analysis on characteristics of diabetic foot ulceration-related genes and immune cells [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1354-1359. |
[4] | PING Feng, GUO Yong, LIU Yu-jing, CAO Yong-mei, LI Ying-chuan. Application of metabonomics in the diagnosis and treatment of acute kidney injury#br# [J]. , 2017, 37(8): 1174-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||