1 |
SCHUBERT A K, SMINK J J, PUMBERGER M, et al. Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells[J]. J Orthop Surg Res, 2018, 13(1): 209.
|
2 |
GUIMARAES C F, GASPERINI L, MARQUES A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nat Rev Mater, 2020, 5(5): 351-370.
|
3 |
HE J, CHEN C, CHEN L, et al. Honeycomb-like hydrogel microspheres for 3D bulk construction of tumor models[J]. Research (Wash D C), 2022, 2022: 9809763.
|
4 |
YIP C H, CHEN A D, WONG Y H, et al. Multiphoton microfabrication and micropatternining (MMM)-based screening of multiplex cell niche factors for phenotype maintenance-Bovine nucleus pulposus cell as an example[J]. Biomaterials, 2022, 281: 121367.
|
5 |
WANG B, KE W, WANG K, et al. Mechanosensitive ion channel Piezo1 activated by matrix stiffness regulates oxidative stress-induced senescence and apoptosis in human intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2021, 2021: 8884922.
|
6 |
LIANG T, ZHANG L L, XIA W, et al. Individual collagen fibril thickening and stiffening of annulus fibrosus in degenerative intervertebral disc[J]. Spine, 2017, 42(19): E1104-E1111.
|
7 |
CHON B H, LEE E J, JING L, et al. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system[J]. Stem Cell Res Ther, 2013, 4(5): 120.
|
8 |
ZHANG C, WANG F, XIE Z, et al. The hippo pathway orchestrates cytoskeletal organisation during intervertebral disc degeneration[J]. Acta Histochem, 2021, 123(6): 151770.
|
9 |
FEARING B V, JING L F, BARCELLONA M N, et al. Mechanosensitive transcriptional coactivators MRTF-A and YAP/TAZ regulate nucleus pulposus cell phenotype through cell shape[J]. FASEB J, 2019, 33(12): 14022-14035.
|
10 |
KLOTZ B J, GAWLITTA D, ROSENBERG A J W P, et al. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair[J]. Trends Biotechnol, 2016, 34(5): 394-407.
|
11 |
CAI C D, ZHANG X S, LI Y G, et al. Self-healing hydrogel embodied with macrophage-regulation and responsive-gene-silencing properties for synergistic prevention of peritendinous adhesion[J]. Adv Mater, 2022, 34(5): e2106564.
|
12 |
SCHUURMAN W, LEVETT P A, POT M W, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs[J]. Macromol Biosci, 2013, 13(5): 551-561.
|
13 |
LIU Z, ZHAO B, ZHANG L, et al. Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis[J]. Compos B Eng, 2022, 234: 109747.
|
14 |
ZHANG T, LIN S Y, SHAO X R, et al. Regulating osteogenesis and adipogenesis in adipose-derived stem cells by controlling underlying substrate stiffness[J]. J Cell Physiol, 2018, 233(4): 3418-3428.
|
15 |
MASUDA K, AOTA Y, MUEHLEMAN C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration[J]. Spine, 2005, 30(1): 5-14.
|
16 |
YU Z H, JI Y C, LI K, et al. Stiffness of the extracellular matrix affects apoptosis of nucleus pulposus cells by regulating the cytoskeleton and activating the TRPV2 channel protein[J]. Cell Signal, 2021, 84: 110005.
|
17 |
VINING K H, MOONEY D J. Mechanical forces direct stem cell behaviour in development and regeneration[J]. Nat Rev Mol Cell Biol, 2017, 18(12): 728-742.
|
18 |
DALY A C, RILEY L, SEGURA T, et al. Hydrogel microparticles for biomedical applications[J]. Nat Rev Mater, 2020, 5(1): 20-43.
|
19 |
SHIRAHAMA H, LEE B H, TAN L P, et al. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis[J]. Sci Rep, 2016, 6: 31036.
|
20 |
BELL S, REDMANN A L, TERENTJEV E M. Universal kinetics of the onset of cell spreading on substrates of different stiffness[J]. Biophys J, 2019, 116(3): 551-559.
|
21 |
BARCELLONA M N, SPEER J E, FEARING B V, et al. Control of adhesive ligand density for modulation of nucleus pulposus cell phenotype[J]. Biomaterials, 2020, 250: 120057.
|
22 |
SCOTT K E, FRALEY S I, RANGAMANI P. A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes[J]. Proc Natl Acad Sci USA, 2021, 118(20): e2021571118.
|
23 |
SEDOV E, KOREN E, CHOPRA S, et al. THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair[J]. Nat Cell Biol, 2022, 24(7): 1049-1063.
|
24 |
JANG M, AN J, OH S W, et al. Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer[J]. Nat Biomed Eng, 2021, 5(1): 114-123.
|
25 |
ZHANG X, CAI D, ZHOU F, et al. Targeting downstream subcellular YAP activity as a function of matrix stiffness with Verteporfin-encapsulated chitosan microsphere attenuates osteoarthritis[J]. Biomaterials, 2020, 232: 119724.
|
26 |
WANG Y, BAI B, HU Y, et al. Hydrostatic pressure modulates intervertebral disc cell survival and extracellular matrix homeostasis via regulating hippo-YAP/TAZ PATHWAY[J]. Stem Cells Int, 2021, 2021: 5626487.
|
27 |
XU P P, GUAN J J, CHEN Y, et al. Stiffness of photocrosslinkable gelatin hydrogel influences nucleus pulposus cell properties in vitro[J]. J Cell Mol Med, 2021, 25(2): 880-891.
|
28 |
BINCH A L A, FITZGERALD J C, GROWNEY E A, et al. Cell-based strategies for IVD repair: clinical progress and translational obstacles[J]. Nat Rev Rheumatol, 2021, 17(3): 158-175.
|