Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (9): 1115-1130.doi: 10.3969/j.issn.1674-8115.2023.09.006
• Basic research • Previous Articles
Received:
2023-01-29
Accepted:
2023-08-03
Online:
2023-09-28
Published:
2023-09-28
Contact:
ZHANG Lei
E-mail:lsy19982021@163.com;weiymzhl@126.com
Supported by:
CLC Number:
LIU Siyu, ZHANG Lei. Sevoflurane inhibits the differentiation and development of neural progenitor cells into neurons in the prefrontal cortex of newborn mice[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1115-1130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.09.006
1 | SHI Y W, WANG G, LI J Y, et al. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats[J]. Neuroreport, 2017, 28(17): 1170-1175. |
2 | TIAN Y, CHEN K Y, LIU L D, et al. Sevoflurane exacerbates cognitive impairment induced by Aβ1-40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus[J]. Mediators Inflamm, 2018, 2018: 3802324. |
3 | WU L Z, ZHAO H L, WENG H, et al. Lasting effects of general anesthetics on the brain in the young and elderly: mixed picture of neurotoxicity, neuroprotection and cognitive impairment[J]. J Anesth, 2019, 33(2): 321-335. |
4 | ZHAO S, FAN Z Q, HU J, et al. The differential effects of isoflurane and sevoflurane on neonatal mice[J]. Sci Rep, 2020, 10(1): 19345. |
5 | OLUTOYE O A, BAKER B W, BELFORT M A, et al. Food and Drug Administration warning on anesthesia and brain development: implications for obstetric and fetal surgery[J]. Am J Obstet Gynecol, 2018, 218(1): 98-102. |
6 | CHEN Q C, CHU W, SHENG R, et al. Maternal anesthesia with sevoflurane during the mid-gestation induces social interaction deficits in offspring C57BL/6 mice[J]. Biochem Biophys Res Commun, 2021, 553: 65-71. |
7 | FANG F, SONG R X, LING X M, et al. Multiple sevoflurane anesthesia in pregnant mice inhibits neurogenesis of fetal hippocampus via repressing transcription factor PAX6[J]. Life Sci, 2017, 175: 16-22. |
8 | LIANG L R, ZENG T, ZHAO Y Y, et al. Melatonin pretreatment alleviates the long-term synaptic toxicity and dysmyelination induced by neonatal sevoflurane exposure via MT1 receptor-mediated Wnt signaling modulation[J]. J Pineal Res, 2021, 71(4): e12771. |
9 | RAPER J, DE BIASIO J C, MURPHY K L, et al. Persistent alteration in behavioural reactivity to a mild social stressor in rhesus monkeys repeatedly exposed to sevoflurane in infancy[J]. Br J Anaesth, 2018, 120(4): 761-767. |
10 | YIN J, ZHAO X, WANG L J, et al. Sevoflurane-induced inflammation development: involvement of cholinergic anti-inflammatory pathway[J]. Behav Pharmacol, 2019, 30(8): 730-737. |
11 | SUN M Y, XIE Z C, ZHANG J Q, et al. Mechanistic insight into sevoflurane-associated developmental neurotoxicity[J]. Cell Biol Toxicol, 2022, 38(6): 927-943. |
12 | XIE L H, LIU Y, HU Y H, et al. Neonatal sevoflurane exposure induces impulsive behavioral deficit through disrupting excitatory neurons in the medial prefrontal cortex in mice[J]. Transl Psychiatry, 2020, 10(1): 202. |
13 | XU X Y, TIAN X, WANG G L. Sevoflurane reduced functional connectivity of excitatory neurons in prefrontal cortex during working memory performance of aged rats[J]. Biomed Pharmacother, 2018, 106: 1258-1266. |
14 | ZHAO T Y, CHEN Y X, SUN Z X, et al. Prenatal sevoflurane exposure causes neuronal excitatory/inhibitory imbalance in the prefrontal cortex and neurofunctional abnormality in rats[J]. Neurobiol Dis, 2020, 146: 105121. |
15 | ZHANG L, CHENG Y Y, XUE Z Y, et al. Sevoflurane impairs m6A-mediated mRNA translation and leads to fine motor and cognitive deficits[J]. Cell Biol Toxicol, 2022, 38(2): 347-369. |
16 | JIANG J L, LI S S, WANG Y Q, et al. Potential neurotoxicity of prenatal exposure to sevoflurane on offspring: metabolomics investigation on neurodevelopment and underlying mechanism[J]. Int J Dev Neurosci, 2017, 62: 46-53. |
17 | WANG C Y, LIU F, FRISCH-DAIELLO J L, et al. Lipidomics reveals a systemic energy deficient state that precedes neurotoxicity in neonatal monkeys after sevoflurane exposure[J]. Anal Chimica Acta, 2018, 1037: 87-96. |
18 | CHENG Y Y, LIU S Y, ZHANG L, et al. Identification of prefrontal cortex and amygdala expressed genes associated with sevoflurane anesthesia on non-human primate[J]. Front Integr Neurosci, 2022, 16: 857349. |
19 | XU G, LU H, DONG Y, et al. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice[J]. Br J Anaesth, 2017, 119(3): 481-491. |
20 | ZHANG J, DONG Y L, ZHOU C, et al. Anesthetic sevoflurane reduces levels of hippocalcin and postsynaptic density protein 95[J]. Mol Neurobiol, 2015, 51(3): 853-863. |
21 | ZHANG L, XUE Z Y, LIU Q D, et al. Disrupted folate metabolism with anesthesia leads to myelination deficits mediated by epigenetic regulation of ERMN[J]. EBioMedicine, 2019, 43: 473-486. |
22 | CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. |
23 | LIM L, MI D, LLORCA A, et al. Development and functional diversification of cortical interneurons[J]. Neuron, 2018, 100(2): 294-313. |
24 | HAMMOND T R, DUFORT C, DISSING-OLESEN L, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes[J]. Immunity, 2019, 50(1): 253-271.e6. |
25 | JOGLEKAR A, PRJIBELSKI A, MAHFOUZ A, et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain[J]. Nat Commun, 2021, 12(1): 463. |
26 | LI X S, LIU G P, YANG L, et al. Decoding cortical glial cell development[J]. Neurosci Bull, 2021, 37(4): 440-460. |
27 | MARQUES S, ZEISEL A, CODELUPPI S, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system[J]. Science, 2016, 352(6291): 1326-1329. |
28 | WOLF F A, ANGERER P, THEIS F J. SCANPY: large-scale single-cell gene expression data analysis[J]. Genome Biol, 2018, 19(1): 15. |
29 | AIBAR S, GONZÁLEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Methods, 2017, 14(11): 1083-1086. |
30 | ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet, 2000, 25(1): 25-29. |
31 | DRAGHICI S, KHATRI P, TARCA A L, et al. A systems biology approach for pathway level analysis[J]. Genome Res, 2007, 17(10): 1537-1545. |
32 | YAARI G, BOLEN C R, THAKAR J, et al. Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations[J]. Nucleic Acids Res, 2013, 41(18): e170. |
33 | BUTT S J B, SOUSA V H, FUCCILLO M V, et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes[J]. Neuron, 2008, 59(5): 722-732. |
34 | GRATTON M O, TORBAN E, JASMIN S B, et al. Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms[J]. Mol Cell Biol, 2003, 23(19): 6922-6935. |
35 | EUN B, CHO B, MOON Y, et al. Induction of neuronal apoptosis by expression of Hes6 via p53-dependent pathway[J]. Brain Res, 2010, 1313: 1-8. |
36 | KOLDAMOVA R, SCHUG J, LEFTEROVA M, et al. Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration[J]. Neurobiol Dis, 2014, 63: 107-114. |
37 | WANG C, QIN L N, MIN Z Q, et al. SOX7 interferes with β-catenin activity to promote neuronal apoptosis[J]. Eur J Neurosci, 2015, 41(11): 1430-1437. |
38 | CHENG B H, CHEN J, BAI B, et al. Neuroprotection of apelin and its signaling pathway[J]. Peptides, 2012, 37(1): 171-173. |
39 | ZHANG N, SU Q P, ZHANG W X, et al. Neuroprotection of dexmedetomidine against propofol-induced neuroapoptosis partly mediated by PI3K/Akt pathway in hippocampal neurons of fetal rat[J]. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 2017, 18(9): 789-796. |
40 | XUE H, XU Y, WANG S, et al. Sevoflurane post-conditioning alleviates neonatal rat hypoxic-ischemic cerebral injury via Ezh2-regulated autophagy[J]. Drug Des Devel Ther, 2019, 13: 1691-1706. |
41 | YANG Q Z, YAN W J, LI X, et al. Activation of canonical Notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice[J]. Anesthesiology, 2012, 117(5): 996-1005. |
42 | ZHANG Y H, GAO Q S, WU Z Y, et al. Sevoflurane postconditioning ameliorates neuronal migration disorder through Reelin/Dab1 and improves long-term cognition in neonatal rats after hypoxic-ischemic injury[J]. Neurotox Res, 2021, 39(5): 1524-1542. |
43 | CHAI D D, CHENG Y Y, SUN Y, et al. Multiple sevoflurane exposures during pregnancy inhibit neuronal migration by upregulating prostaglandin D2 synthase[J]. Int J Dev Neurosci, 2019, 78: 77-82. |
44 | WANG X, SHAN Y Y, TANG Z Y, et al. Neuroprotective effects of dexmedetomidine against isoflurane-induced neuronal injury via glutamate regulation in neonatal rats[J]. Drug Des Devel Ther, 2018, 13: 153-160. |
45 | CHLEILAT E, SKATULLA L, RAHHAL B, et al. TGF-β signaling regulates development of midbrain dopaminergic and hindbrain serotonergic neuron subgroups[J]. Neuroscience, 2018, 381: 124-137. |
46 | JIANG M, TANG T X, LIANG X Y, et al. Maternal sevoflurane exposure induces temporary defects in interkinetic nuclear migration of radial glial progenitors in the fetal cerebral cortex through the Notch signalling pathway[J]. Cell Prolif, 2021, 54(6): e13042. |
47 | POON C L, MITCHELL K A, KONDO S, et al. The Hippo pathway regulates neuroblasts and brain size in Drosophila melanogaster[J]. Curr Biol, 2016, 26(8): 1034-1042. |
48 | GALDERISI U, JORI F P, GIORDANO A. Cell cycle regulation and neural differentiation[J]. Oncogene, 2003, 22(33): 5208-5219. |
49 | LIU S W, FANG F, SONG R X, et al. Sevoflurane affects neurogenesis through cell cycle arrest via inhibiting Wnt/β-catenin signaling pathway in mouse neural stem cells[J]. Life Sci, 2018, 209: 34-42. |
50 | SONG S Y, PENG K, MENG X W, et al. Single-nucleus atlas of sevoflurane-induced hippocampal cell type-and sex-specific effects during development in mice[J]. Anesthesiology, 2023, 138(5): 477-495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||