Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (7): 839-846.doi: 10.3969/j.issn.1674-8115.2024.07.005
• Topics on advances in translational medicine frontiers • Previous Articles
XIA Xixi1(), DING Keke1, ZHANG Huiheng1, PENG Xufei1, SUN Yimin1, TANG Yajun1, TANG Xiaofang2()
Received:
2024-01-30
Accepted:
2024-04-03
Online:
2024-07-28
Published:
2024-07-28
Contact:
TANG Xiaofang
E-mail:xiaxixi0715@163.com;tangxiaofang19840@163.com
Supported by:
CLC Number:
XIA Xixi, DING Keke, ZHANG Huiheng, PENG Xufei, SUN Yimin, TANG Yajun, TANG Xiaofang. Research progress of the role of intestinal microbiota-mediated bile acids in inflammatory bowel disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 839-846.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.07.005
Phylum | Genus (species) | Imbalance in IBD patient |
---|---|---|
Proteobacteria | Escherichia (AIEC) | ↑ |
Bacteroidetes | Bacteroides (ETBF) | ↑ |
Fusobacteria | Fusobacterium | ↑ |
Firmicutes | Ruminococcus | ↑ |
Roseburia | ↓ | |
Faecalibacterium (Faecalibacterium prausnitzii) | ↓ | |
Actinobacteria | Bifidobacterium | ↓ |
Verrucomicrobia | Akkermansia (Akkermansia muciniphila) | ↓ |
Tab 1 Intestinal microbial signatures in patients with IBD
Phylum | Genus (species) | Imbalance in IBD patient |
---|---|---|
Proteobacteria | Escherichia (AIEC) | ↑ |
Bacteroidetes | Bacteroides (ETBF) | ↑ |
Fusobacteria | Fusobacterium | ↑ |
Firmicutes | Ruminococcus | ↑ |
Roseburia | ↓ | |
Faecalibacterium (Faecalibacterium prausnitzii) | ↓ | |
Actinobacteria | Bifidobacterium | ↓ |
Verrucomicrobia | Akkermansia (Akkermansia muciniphila) | ↓ |
1 | SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679. |
2 | KAPLAN G G, WINDSOR J W. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66. |
3 | SARTOR R B, WU G D. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches[J]. Gastroenterology, 2017, 152(2): 327-339.e4. |
4 | LIU S, ZHAO W J, LAN P, et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345. |
5 | SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468. |
6 | QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579(7797): 123-129. |
7 | SONG Z W, CAI Y Y, LAO X Z, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome[J]. Microbiome, 2019, 7(1): 9. |
8 | TANG B, TANG L, LI S P, et al. Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy[J]. Nat Commun, 2023, 14(1): 1305. |
9 | GOODWIN B, JONES S A, PRICE R R, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis[J]. Mol Cell, 2000, 6(3): 517-526. |
10 | KONG B, WANG L, CHIANG J Y, et al. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice[J]. Hepatology, 2012, 56(3): 1034-1043. |
11 | DENSON L A, STURM E, ECHEVARRIA W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp[J]. Gastroenterology, 2001, 121(1): 140-147. |
12 | CHIANG J Y L, FERRELL J M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573. |
13 | SUN L L, XIE C, WANG G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24(12): 1919-1929. |
14 | ZHANG X Q, OSAKA T, TSUNEDA S. Bacterial metabolites directly modulate farnesoid X receptor activity[J]. Nutr Metab, 2015, 12: 48. |
15 | VAN BEST N, ROLLE-KAMPCZYK U, SCHAAP F G, et al. Bile acids drive the newborn′s gut microbiota maturation[J]. Nat Commun, 2020, 11(1): 3692. |
16 | TIAN Y, GUI W, KOO I, et al. The microbiome modulating activity of bile acids[J]. Gut Microbes, 2020, 11(4): 979-996. |
17 | WATANABE M, FUKIYA S, YOKOTA A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58(6): 1143-1152. |
18 | LI Y, TANG R Q, LEUNG P S C, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases[J]. Autoimmun Rev, 2017, 16(9): 885-896. |
19 | CREMERS C M, KNOEFLER D, VITVITSKY V, et al. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo[J]. Proc Natl Acad Sci U S A, 2014, 111(16): E1610-E1619. |
20 | D'ALDEBERT E, BIYEYEME BI MVE M J, MERGEY M, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium[J]. Gastroenterology, 2009, 136(4): 1435-1443. |
21 | INAGAKI T, MOSCHETTA A, LEE Y K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3920-3925. |
22 | KAKIYAMA G, PANDAK W M, GILLEVET P M, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955. |
23 | MOUSA O Y, JURAN B D, MCCAULEY B M, et al. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation[J]. Hepatology, 2021, 74(1): 281-295. |
24 | SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.e5. |
25 | XU M Q, CEN M S, SHEN Y Q, et al. Deoxycholic acid-induced gut dysbiosis disrupts bile acid enterohepatic circulation and promotes intestinal inflammation[J]. Dig Dis Sci, 2021, 66(2): 568-576. |
26 | LI T, DING N, GUO H Q, et al. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage[J]. Cell Host Microbe, 2024, 32(2): 191-208.e9. |
27 | CHEN L, JIAO T Y, LIU W W, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal[J]. Cell Stem Cell, 2022, 29(9): 1366-1381.e9. |
28 | JIANG W Y, SU J W, ZHANG X F, et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease[J]. Inflamm Res, 2014, 63(11): 943-950. |
29 | PAIK D, YAO L N, ZHANG Y C, et al. Human gut bacteria produce Τh17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912. |
30 | CARUSO R, LO B C, NÚÑEZ G. Host-microbiota interactions in inflammatory bowel disease[J]. Nat Rev Immunol, 2020, 20(7): 411-426. |
31 | SONG X Y, SUN X M, OH S F, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415. |
32 | LI W, HANG S Y, FANG Y, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1[J]. Cell Host Microbe, 2021, 29(9): 1366-1377.e9. |
33 | LEE J C, LYONS P A, MCKINNEY E F, et al. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis[J]. J Clin Invest, 2011, 121(10): 4170-4179. |
34 | DING C J, HONG Y, CHE Y, et al. Bile acid restrained T cell activation explains cholestasis aggravated hepatitis B virus infection[J]. FASEB J, 2022, 36(9): e22468. |
35 | ZHU C, BOUCHERON N, MÜLLER A C, et al. 24-Norursodeoxycholic acid reshapes immunometabolism in CD8+ T cells and alleviates hepatic inflammation[J]. J Hepatol, 2021, 75(5): 1164-1176. |
36 | KHAN K J, ULLMAN T A, FORD A C, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis[J]. Am J Gastroenterol, 2011, 106(4): 661-673. |
37 | HU C L, LIAO S T, LV L, et al. Intestinal immune imbalance is an alarm in the development of IBD[J]. Mediators Inflamm, 2023, 2023: 1073984. |
38 | MA C, HAN M J, HEINRICH B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5931. |
39 | CHENG P, WU J W, ZONG G F, et al. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver[J]. Pharmacol Res, 2023, 188: 106643. |
40 | SHAO J W, GE T T, TANG C L, et al. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis[J]. Inflamm Res, 2022, 71(10/11): 1389-1401. |
41 | CHEN Y, LE T H, DU Q M, et al. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling[J]. Int Immunopharmacol, 2019, 71: 144-154. |
42 | CAMPBELL C, MCKENNEY P T, KONSTANTINOVSKY D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581(7809): 475-479. |
43 | FAN L N, QI Y D, QU S W, et al. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling[J]. Gut Microbes, 2021, 13(1): 1-17. |
44 | ALMO M M D, SOUSA I G, OLINTO V G, et al. Therapeutic effects of Zymomonas mobilis on experimental DSS-induced colitis mouse model[J]. Microorganisms, 2023, 11(11): 2793. |
45 | ZHOU J, LI M Y, CHEN Q F, et al. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nat Commun, 2022, 13(1): 3432. |
46 | VALCHEVA R, KOLEVA P, MARTÍNEZ I, et al. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels[J]. Gut Microbes, 2019, 10(3): 334-357. |
47 | AKRAM W, GARUD N, JOSHI R. Role of inulin as prebiotics on inflammatory bowel disease[J]. Drug Discov Ther, 2019, 13(1): 1-8. |
48 | ZHANG Z Z, PAN Y, GUO Z Y, et al. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease[J]. Bioact Mater, 2024, 33: 71-84. |
49 | ARMSTRONG H K, BORDING-JORGENSEN M, SANTER D M, et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients[J]. Gastroenterology, 2023, 164(2): 228-240. |
50 | MOAYYEDI P, SURETTE M G, KIM P T, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial[J]. Gastroenterology, 2015, 149(1): 102-109.e6. |
51 | COSTELLO S P, HUGHES P A, WATERS O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164. |
52 | SOKOL H, LANDMAN C, SEKSIK P, et al. Fecal microbiota transplantation to maintain remission in Crohn′s disease: a pilot randomized controlled study[J]. Microbiome, 2020, 8(1): 12. |
53 | KONG L J, LLOYD-PRICE J, VATANEN T, et al. Linking strain engraftment in fecal microbiota transplantation with maintenance of remission in Crohn's disease[J]. Gastroenterology, 2020, 159(6): 2193-2202.e5. |
54 | FEDERICI S, KREDO-RUSSO S, VALDÉS-MAS R, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation[J]. Cell, 2022, 185(16): 2879-2898.e24. |
55 | ZHANG L S, WANG Y D, CHEN W D, et al. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice[J]. Hepatology, 2012, 56(6): 2336-2343. |
56 | GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60(4): 463-472. |
57 | GOHDA K, IGUCHI Y, MASUDA A, et al. Design and identification of a new farnesoid X receptor (FXR) partial agonist by computational structure-activity relationship analysis: ligand-induced H8 helix fluctuation in the ligand-binding domain of FXR may lead to partial agonism[J]. Bioorg Med Chem Lett, 2021, 41: 128026. |
[1] | LI Junru, OUYANG Yan, XIE Jingyuan. Research progress in the role of gut microbiota in the pathogenesis and treatment of IgA nephropathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1044-1048. |
[2] | WANG Jieyi, ZHENG Dan, ZHENG Xiaojiao, JIA Wei, ZHAO Aihua. Research progress in biological activities and mechanisms of theabrownin [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 768-774. |
[3] | LIU Qianruo, FANG Zichen, WU Yuhan, ZHONG Xianxin, GUO Muhe, JIA Jie. Research progress in the relationship between gut microbia and its metabolites and gestational diabetes mellitus [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 641-647. |
[4] | LI Bowen, LIU Ningning, WANG Hui. Advances in gut microbiota in the pathogenesis and treatment of inflammatory bowel disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 364-368. |
[5] | Jing WU, Xue-yi LI, Jing-hong CHEN, Ze-jian WANG. Study on changes of hippocampal bile acid receptors in the depression mouse models [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1628-1634. |
[6] | Qian ZHUANG, Zhi-xia DONG, Xin-jian WAN. Research progress of effect of estrogen and its receptors on cholesterol gallstone disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1394-1396. |
[7] | ZOU Chen1, 2, XU Run-hao1, 3, ZHANG Hong2, MA Zhan2, CHEN Li2, ZHANG Jie3, LI Min3, ZHANG Shu-lin1. Potential roles of small metabolites in the differential diagnosis between lung cancer and pneumonia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1041-1047. |
[8] | LI Sen1, JIA Zi-heng1, WEI Xue-rui1, MA Sai1, LU Tian-cheng1, LI Ting-ting2, GU Yan-yun2. Role of bile acid on maintaining metabolic homeostasis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1126-1130. |
[9] | LI Yue1, 2, SUN Han-xiao2, SHU Jie2, LI Yong-mei1#, SHENG Hui-ming2#. Anti-inflammatory effects of liraglutide on innate lymphoid cells in mice with inflammatory bowel disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(6): 744-751. |
[10] | ZHOU Cheng, SUN Peng-fei, YIN Ji-yao, WANG Yang-yang, XIAO Hai-juan. Evolution of clinical treatment in inflammatory bowel diseasesfecal microbiota transplantation [J]. , 2020, 40(2): 267-. |
[11] | LU Hai-yang, ZHAO Wei-li. Role of gastrointestinal microbiota in tumorigenesis [J]. , 2019, 39(9): 1083-. |
[12] | ZHAO Ming-liang1, 2, ZHAO Ai-hua1, ZHENG Xiao-jiao1, JIA Wei1. Role of farnesol X receptor in glycolipid metabolism regulation [J]. , 2019, 39(6): 671-. |
[13] | KUANG Jun-liang, ZHENG Xiao-jiao, ZHAO Ai-hua, JIA Wei. Alterations in bile acid levels in metabolic diseases and related treatment strategies [J]. , 2019, 39(6): 678-. |
[14] | LI Qing-li, WEN Jun, MIN Xue-jie, ZHAO Li, ZHAO Xiao-ping. Effect of IDHgene mutation on acute myeloid leukemia [J]. , 2018, 38(8): 960-. |
[15] | WANG Bo-cheng1, 2, ZHU Dan2, LI Xiao-guang3, WU Li-zhong2, ZHAO Jiang-ming2, MEI Jun1. Application and clinical value of multi-voxel magnetic resonance spectroscopy in the diagnosis of tongue carcinoma [J]. , 2018, 38(11): 1327-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||