Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (2): 186-193.doi: 10.3969/j.issn.1674-8115.2025.02.007
• Clinical research • Previous Articles Next Articles
SHEN Haoliang1(), YUAN Kaihao2(
), YU Lei1, YANG Nana1, WANG Yiping1, ZHAO Hongsheng1, GUO Fengmei3, SUN Chenliang1(
)
Received:
2024-10-21
Accepted:
2025-01-06
Online:
2025-02-24
Published:
2025-02-28
Contact:
SUN Chenliang
E-mail:Shenhaoliang2006@126.com;1814352750@qq.com;scl8210@163.com
Supported by:
CLC Number:
SHEN Haoliang, YUAN Kaihao, YU Lei, YANG Nana, WANG Yiping, ZHAO Hongsheng, GUO Fengmei, SUN Chenliang. Value of combined diaphragm and intercostal muscle ultrasonography in guiding weaning assessment in mechanically ventilated patients with sepsis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 186-193.
Item | Successful weaning group (n=114) | Failed weaning group (n=24) | χ2/t/Z value | P value |
---|---|---|---|---|
Age/year | 73.6±12.7 | 75.3±6.4 | -0.967 | 0.337 |
Sex/n(%) | 2.421 | 0.120 | ||
Male | 61 (53.5) | 17 (70.8) | ||
Female | 53 (46.5) | 7 (29.2) | ||
BMI/(kg·m-2) | 22.6±2.3 | 23.2±1.4 | -1.648 | 0.105 |
APACHEⅡ | 16.4±4.9 | 17.3±2.2 | -1.517 | 0.133 |
SOFA | 6.9±2.4 | 8.0±1.6 | -2.039 | 0.043 |
Sepsis source/n(%) | ||||
Respiratory system | 32 (28.1) | 5 (20.8) | 0.529 | 0.467 |
Digestive system | 36 (31.6) | 10 (41.7) | 0.908 | 0.341 |
Urinary system | 29 (25.4) | 7 (29.2) | 0.143 | 0.705 |
Others | 17 (14.9) | 2 (8.3) | ‒ | 0.527 |
Patient source/n(%) | 0.164 | 0.686 | ||
Post-operation | 71 (62.3) | 16 (66.7) | ||
General medicine | 43 (37.7) | 8 (33.3) | ||
Causes of mechanical ventilation/n(%) | 0.095 | 0.758 | ||
Intrapulmonary factors | 39 (34.2) | 9 (37.5) | ||
Extrapulmonary factors | 75 (65.8) | 15 (62.5) | ||
Mechanical ventilation time/h | 47 (29‒93) | 180 (103‒210) | -5.694 | <0.001 |
Length of ICU stay/d | 5 (4‒8) | 21 (14‒33) | -6.730 | <0.001 |
Total length of stay/d | 17 (12‒22) | 31 (22‒42) | -4.536 | <0.001 |
28-day mortality/n(%) | 15 (13.2) | 7 (29.2) | ‒ | 0.066 |
Tab 1 Comparison of clinical baseline characteristics between the two groups
Item | Successful weaning group (n=114) | Failed weaning group (n=24) | χ2/t/Z value | P value |
---|---|---|---|---|
Age/year | 73.6±12.7 | 75.3±6.4 | -0.967 | 0.337 |
Sex/n(%) | 2.421 | 0.120 | ||
Male | 61 (53.5) | 17 (70.8) | ||
Female | 53 (46.5) | 7 (29.2) | ||
BMI/(kg·m-2) | 22.6±2.3 | 23.2±1.4 | -1.648 | 0.105 |
APACHEⅡ | 16.4±4.9 | 17.3±2.2 | -1.517 | 0.133 |
SOFA | 6.9±2.4 | 8.0±1.6 | -2.039 | 0.043 |
Sepsis source/n(%) | ||||
Respiratory system | 32 (28.1) | 5 (20.8) | 0.529 | 0.467 |
Digestive system | 36 (31.6) | 10 (41.7) | 0.908 | 0.341 |
Urinary system | 29 (25.4) | 7 (29.2) | 0.143 | 0.705 |
Others | 17 (14.9) | 2 (8.3) | ‒ | 0.527 |
Patient source/n(%) | 0.164 | 0.686 | ||
Post-operation | 71 (62.3) | 16 (66.7) | ||
General medicine | 43 (37.7) | 8 (33.3) | ||
Causes of mechanical ventilation/n(%) | 0.095 | 0.758 | ||
Intrapulmonary factors | 39 (34.2) | 9 (37.5) | ||
Extrapulmonary factors | 75 (65.8) | 15 (62.5) | ||
Mechanical ventilation time/h | 47 (29‒93) | 180 (103‒210) | -5.694 | <0.001 |
Length of ICU stay/d | 5 (4‒8) | 21 (14‒33) | -6.730 | <0.001 |
Total length of stay/d | 17 (12‒22) | 31 (22‒42) | -4.536 | <0.001 |
28-day mortality/n(%) | 15 (13.2) | 7 (29.2) | ‒ | 0.066 |
Item | Successful weaning group (n=114) | Failed weaning group (n=24) | t/Z value | P value |
---|---|---|---|---|
Body temperature/℃ | 37.0±0.7 | 36.8±0.6 | 1.025 | 0.311 |
Heart rate/(beat·min-1) | 90.8±15.0 | 94.5±13.6 | -1.129 | 0.261 |
Mean arterial pressure/mmHg | 86.3±11.5 | 91.2±11.9 | -1.904 | 0.059 |
Respiratory rate/(times·min-1) | 16.2±4.6 | 17.2±3.6 | -0.965 | 0.336 |
Voluntary tidal volume/mL | 440 (377‒474) | 398 (341‒457) | -1.697 | 0.090 |
Rapid shallow breathing index/(times·L-1·min-1) | 37.0 (28‒45) | 40.0 (32‒54) | -1.706 | 0.088 |
Albumin/(g·L-1) | 27.3 (23.8‒31.0) | 28.1 (23.3‒32.6) | -0.360 | 0.719 |
Pre-albumin/(mg·L-1) | 289.3±47.9 | 275.7±50.3 | 1.249 | 0.214 |
White blood cell/(×109·L-1) | 16.0 (13.8‒18.1) | 16.7 (13.9‒18.4) | -0.677 | 0.498 |
C-reactive protein/(mg·L-1) | 75.2 (61.0‒90.5) | 81.2 (62.2‒89.9) | -0.768 | 0.443 |
Procalcitonin/(μg·L-1) | 71.9 (63.7‒83.5) | 74.3 (62.9‒85.4) | -0.003 | 0.998 |
Artery blood gas | ||||
pH value | 7.42±0.05 | 7.45±0.04 | -2.623 | 0.010 |
PaO2/mmHg | 97.4±19.5 | 92.9±14.8 | 1.053 | 0.294 |
PaCO2/mmHg | 39.6±6.2 | 42.3±6.1 | -1.917 | 0.057 |
PaO2/FiO2 | 316.9±64.9 | 309.8±49.3 | 0.506 | 0.613 |
Base excess/(mmol·L-1) | 1.95±3.73 | 3.10±2.81 | -1.723 | 0.092 |
Lactate/(mmol·L-1) | 1.32±0.64 | 1.48±0.73 | -1.109 | 0.269 |
Tab 2 Comparison of the parameters of clinical characteristics of the two groups at weaning
Item | Successful weaning group (n=114) | Failed weaning group (n=24) | t/Z value | P value |
---|---|---|---|---|
Body temperature/℃ | 37.0±0.7 | 36.8±0.6 | 1.025 | 0.311 |
Heart rate/(beat·min-1) | 90.8±15.0 | 94.5±13.6 | -1.129 | 0.261 |
Mean arterial pressure/mmHg | 86.3±11.5 | 91.2±11.9 | -1.904 | 0.059 |
Respiratory rate/(times·min-1) | 16.2±4.6 | 17.2±3.6 | -0.965 | 0.336 |
Voluntary tidal volume/mL | 440 (377‒474) | 398 (341‒457) | -1.697 | 0.090 |
Rapid shallow breathing index/(times·L-1·min-1) | 37.0 (28‒45) | 40.0 (32‒54) | -1.706 | 0.088 |
Albumin/(g·L-1) | 27.3 (23.8‒31.0) | 28.1 (23.3‒32.6) | -0.360 | 0.719 |
Pre-albumin/(mg·L-1) | 289.3±47.9 | 275.7±50.3 | 1.249 | 0.214 |
White blood cell/(×109·L-1) | 16.0 (13.8‒18.1) | 16.7 (13.9‒18.4) | -0.677 | 0.498 |
C-reactive protein/(mg·L-1) | 75.2 (61.0‒90.5) | 81.2 (62.2‒89.9) | -0.768 | 0.443 |
Procalcitonin/(μg·L-1) | 71.9 (63.7‒83.5) | 74.3 (62.9‒85.4) | -0.003 | 0.998 |
Artery blood gas | ||||
pH value | 7.42±0.05 | 7.45±0.04 | -2.623 | 0.010 |
PaO2/mmHg | 97.4±19.5 | 92.9±14.8 | 1.053 | 0.294 |
PaCO2/mmHg | 39.6±6.2 | 42.3±6.1 | -1.917 | 0.057 |
PaO2/FiO2 | 316.9±64.9 | 309.8±49.3 | 0.506 | 0.613 |
Base excess/(mmol·L-1) | 1.95±3.73 | 3.10±2.81 | -1.723 | 0.092 |
Lactate/(mmol·L-1) | 1.32±0.64 | 1.48±0.73 | -1.109 | 0.269 |
Peri-weaning period | Successful weaning group (n=114) | Failed weaning group (n=24) | χ2/t value | P value |
---|---|---|---|---|
Before extubation (during SBT) | ||||
DE/cm | 1.13±0.35 | 0.88±0.15 | 4.558 | <0.001 |
TFD/% | 19.1±3.2 | 17.4±3.0 | 1.855 | 0.066 |
TFic/% | 16.3±3.5 | 19.5±2.9 | -3.343 | 0.001 |
TFic/TFD | 0.87±0.19 | 1.14±0.16 | -5.265 | <0.001 |
After extubation (within 2 h) | ||||
DE/cm | 1.14±0.34 | 0.96±0.20 | 1.928 | 0.057 |
TFD/% | 18.3±4.8 | 15.4±3.4 | 2.277 | 0.025 |
TFic/% | 15.6±5.7 | 19.8±4.8 | -2.738 | 0.007 |
TFic/TFD | 0.86±0.25 | 1.36±0.47 | -4.073 | 0.001 |
Tab 3 Comparison of respiratory muscle ultrasound parameter during the peri-weaning period between the two groups
Peri-weaning period | Successful weaning group (n=114) | Failed weaning group (n=24) | χ2/t value | P value |
---|---|---|---|---|
Before extubation (during SBT) | ||||
DE/cm | 1.13±0.35 | 0.88±0.15 | 4.558 | <0.001 |
TFD/% | 19.1±3.2 | 17.4±3.0 | 1.855 | 0.066 |
TFic/% | 16.3±3.5 | 19.5±2.9 | -3.343 | 0.001 |
TFic/TFD | 0.87±0.19 | 1.14±0.16 | -5.265 | <0.001 |
After extubation (within 2 h) | ||||
DE/cm | 1.14±0.34 | 0.96±0.20 | 1.928 | 0.057 |
TFD/% | 18.3±4.8 | 15.4±3.4 | 2.277 | 0.025 |
TFic/% | 15.6±5.7 | 19.8±4.8 | -2.738 | 0.007 |
TFic/TFD | 0.86±0.25 | 1.36±0.47 | -4.073 | 0.001 |
Observer consistency | ICC | 95% CI | Reliability level | P value | |
---|---|---|---|---|---|
Intra-observer consistency | 0.890 | 0.788‒0.951 | Good | <0.001 | |
Observer 1st Ticexp/mm | 3.70±0.55 | ||||
Observer 2nd Ticexp/mm | 3.63±0.40 | ||||
Observer 3rd Ticexp/mm | 3.68±0.48 | ||||
Inter-observer consistency | 0.876 | 0.718‒0.949 | Good | <0.001 | |
Observer A Ticexp/mm | 3.68±0.45 | ||||
Observer B Ticexp/mm | 3.62±0.41 |
Tab 4 Measurement reproducibility of the intercostal muscle ultrasonography
Observer consistency | ICC | 95% CI | Reliability level | P value | |
---|---|---|---|---|---|
Intra-observer consistency | 0.890 | 0.788‒0.951 | Good | <0.001 | |
Observer 1st Ticexp/mm | 3.70±0.55 | ||||
Observer 2nd Ticexp/mm | 3.63±0.40 | ||||
Observer 3rd Ticexp/mm | 3.68±0.48 | ||||
Inter-observer consistency | 0.876 | 0.718‒0.949 | Good | <0.001 | |
Observer A Ticexp/mm | 3.68±0.45 | ||||
Observer B Ticexp/mm | 3.62±0.41 |
1 | TRUDZINSKI F C, NEETZ B, BORNITZ F, et al. Risk factors for prolonged mechanical ventilation and weaning failure: a systematic review[J]. Respiration, 2022, 101(10): 959-969. |
2 | DRES M, GOLIGHER E C, HEUNKS L M A, et al. Critical illness-associated diaphragm weakness[J]. Intensive Care Med, 2017, 43(10): 1441-1452. |
3 | DOT I, PÉREZ-TERAN P, SAMPER M A, et al. Diaphragm dysfunction in mechanically ventilated patients[J]. Arch Bronconeumol, 2017, 53(3): 150-156. |
4 | DEMOULE A, JUNG B, PRODANOVIC H, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study[J]. Am J Respir Crit Care Med, 2013, 188(2): 213-219. |
5 | OLIVEIRA T S, SANTOS A T, ANDRADE C B V, et al. Sepsis disrupts mitochondrial function and diaphragm morphology[J]. Front Physiol, 2021, 12: 704044. |
6 | JUNG B, NOUGARET S, CONSEIL M, et al. Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography[J]. Anesthesiology, 2014, 120(5): 1182-1191. |
7 | KILARU D, PANEBIANCO N, BASTON C. Diaphragm ultrasound in weaning from mechanical ventilation[J]. Chest, 2021, 159(3): 1166-1172. |
8 | DRES M, SIMILOWSKI T, GOLIGHER E C, et al. Dyspnoea and respiratory muscle ultrasound to predict extubation failure[J]. Eur Respir J, 2021, 58(5): 2100002. |
9 | VIVIER E, MULLER M, PUTEGNAT J B, et al. Inability of diaphragm ultrasound to predict extubation failure: a multicenter study[J]. Chest, 2019, 155(6): 1131-1139. |
10 | DRES M, DUBÉ B P, GOLIGHER E, et al. Usefulness of parasternal intercostal muscle ultrasound during weaning from mechanical ventilation[J]. Anesthesiology, 2020, 132(5): 1114-1125. |
11 | TERZI N, LOFASO F, MASSON R, et al. Physiological predictors of respiratory and cough assistance needs after extubation[J]. Ann Intensive Care, 2018, 8(1): 18. |
12 | BOLES J M, BION J, CONNORS A, et al. Weaning from mechanical ventilation[J]. Eur Respir J, 2007, 29(5): 1033-1056. |
13 | 朱孟雷, 刘虹, 韩继斌, 等. 膈肌超声对重症机械通气患者脱机结果的预测价值[J]. 中华危重症医学杂志(电子版), 2021, 14(5): 425-429. |
ZHU M L, LIU H, HAN J B,et al. Predictive value of diaphragm ultrasound for the weaning outcome in critically ill mechanically ventilated patients[J].Chinese Journal of Critical Care Medicine(Electronic Edition), 2021,14(5): 425-429. | |
14 | RAMASWAMY A, KUMAR R, ARUL M, et al. Prediction of weaning outcome from mechanical ventilation using ultrasound assessment of parasternal intercostal muscle thickness[J]. Indian J Crit Care Med, 2023, 27(10): 704-708. |
15 | FARGHALY S, HASAN A A. Diaphragm ultrasound as a new method to predict extubation outcome in mechanically ventilated patients[J]. Aust Crit Care, 2017, 30(1): 37-43. |
16 | DININO E, GARTMAN E J, SETHI J M, et al. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation[J]. Thorax, 2014, 69(5): 423-427. |
17 | KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. J Chiropr Med, 2016, 15(2): 155-163. |
18 | SCHEPENS T, DRES M, HEUNKS L, et al. Diaphragm-protective mechanical ventilation[J]. Curr Opin Crit Care, 2019, 25(1): 77-85. |
19 | PETROF B J. Diaphragmatic dysfunction in the intensive care unit: caught in the cross-fire between sepsis and mechanical ventilation[J]. Crit Care, 2013, 17(4): R181. |
20 | HILBERT G, GRUSON D, PORTEL L, et al. Airway occlusion pressure at 0.1 s (P0.1) after extubation: an early indicator of postextubation hypercapnic respiratory insufficiency[J]. Intensive Care Med, 1998, 24(12): 1277-1282. |
21 | QIAN Z, YANG M, LI L, et al. Ultrasound assessment of diaphragmatic dysfunction as a predictor of weaning outcome from mechanical ventilation: a systematic review and meta-analysis[J]. BMJ Open, 2018, 8(9): e021189. |
22 | PARTHASARATHY S, JUBRAN A, LAGHI F, et al. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure[J]. J Appl Physiol (1985), 2007, 103(1): 140-147. |
23 | THILLE A W, GACOUIN A, COUDROY R, et al. Spontaneous-breathing trials with pressure-support ventilation or a T-piece[J]. N Engl J Med, 2022, 387(20): 1843-1854. |
24 | DRES M, DEMOULE A. Diaphragm dysfunction during weaning from mechanical ventilation: an underestimated phenomenon with clinical implications[J]. Crit Care, 2018, 22(1): 73. |
25 | FORMENTI P, UMBRELLO M, DRES M, et al. Ultrasonographic assessment of parasternal intercostal muscles during mechanical ventilation[J]. Ann Intensive Care, 2020, 10(1): 120. |
26 | VIVIER E, MEKONTSO DESSAP A. Bedside ultrasound for weaning from mechanical ventilation: the diaphragm is not enough![J]. Anesthesiology, 2020, 132(5): 947-948. |
27 | 魏逸凡, 朱月钮, 孔祥莓, 等. 早期机械通气对小儿膈肌形态与功能的影响[J]. 上海交通大学学报(医学版), 2022, 42(12): 1712-1719. |
WEI Y F, ZHU Y N, KONG X M, et al. Effects of early mechanical ventilation on the morphology and function of the diaphragm in children[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022,42(12): 1712-1719. | |
28 | STERR F, REINTKE M, BAUERNFEIND L, et al. Predictors of weaning failure in ventilated intensive care patients: a systematic evidence map[J]. Crit Care, 2024, 28(1): 366. |
29 | LIU Y, ZHOU Y, LIU P, et al. Combined lung and diaphragm ultrasound predicts extubation outcomes in ARDS: a prospective study[J]. Eur J Med Res, 2024, 29(1): 510. |
30 | HE G J, HAN Y J, ZHAN Y S, et al. The combined use of parasternal intercostal muscle thickening fraction and P0.1 for prediction of weaning outcomes[J]. Heart Lung, 2023, 62: 122-128. |
31 | PENG L, KANG H S, CHANG H R, et al. The ratio of parasternal intercostal muscle-thickening fraction-to-diaphragm thickening fraction for predicting weaning failure[J]. J Crit Care, 2024, 83: 154847. |
32 | SCARLATA S, MANCINI D, LAUDISIO A, et al. Reproducibility of diaphragmatic thickness measured by M-mode ultrasonography in healthy volunteers[J]. Respir Physiol Neurobiol, 2019, 260: 58-62. |
33 | MOLINA-HERNÁNDEZ N, CHICHARRO J L, BECERRO-DE-BENGOA-VALLEJO R, et al. Ultrasonographic reliability and repeatability of simultaneous bilateral assessment of diaphragm muscle thickness during normal breathing[J]. Quant Imaging Med Surg, 2023, 13(10): 6656-6667. |
[1] | XU Feixiang, YU Feng, WANG Ruilan, SONG Zhenju, TONG Chaoyang, ZHU Changqing. Application of metagenomics next-generation sequencing of pathogen in patients with pneumonia-induced sepsis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 169-178. |
[2] | SONG Chenlu, XIANG Jun, YANG Huizhong. Early alarming effect of serum heparin-binding protein on prognosis and occurrence of sepsis in severely burned patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 474-481. |
[3] | WEI Yifan, ZHU Yueniu, KONG Xiangmei, XU Yaya, ZHU Xiaodong. Effects of early mechanical ventilation on the morphology and function of the diaphragm in children [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1712-1719. |
[4] | TANG Xiao-meng1, 2, REN Yu-qian1, XIONG Xi1, 2, MIAO Hui-jie1, SHAO Lu-jing1, 2, CUI Yun1, ZHANG Yu-cai 1, 2, WANG Chun-xia1, 2. Clinical value of fibroblast growth factor 19 in predicting gastrointestinal dysfunction in children with sepsis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1236-1242. |
[5] | RUAN Xin1, ZHANG Ying-ting1, HAN Ke-qi1, LIN Long-shuai2, CHEN Chen1, YUE Ming1, WANG Chu-qiao1, SUN Ying-gang3, ZHAO Qing-hua2, HE Ming1. SIRT7 protecting hepatocytes LPS or D-GalN/LPS-induced apoptosisattenuating endoplasmic reticulum stress via inactivation of GRP78 [J]. , 2019, 39(8): 812-. |
[6] | ZHAO Yi-si1, YU Ying-xi1, LIN Shi-hui2, XU Fang1, 2. Advances in the study of T cell immunity in invasive fungal infections secondary to sepsis [J]. , 2019, 39(11): 1325-. |
[7] | ZHANG Ting-ting1, HUANG Run1, WU Yin1, XU Yi1, GE Xiao-hua2. Evaluation of the effect of using the new PRISM IV to assess the condition of children with mechanical ventilation [J]. , 2018, 38(9): 1099-. |
[8] | XU Yao, MA Shuai, DING Feng . Progress of antimicrobial peptides in the treatment of sepsis#br# [J]. , 2017, 37(8): 1161-. |
[9] | LU Yang, XUE Fei, ZHAO Hong-sheng, et al. Effect of dexmedetomidine on expression of triggering receptor expressed on myeloid cells-1 in lung tissues of rats with sepsis [J]. , 2015, 35(9): 1274-. |
[10] | WANG Li-feng, MA Jun, CHEN Yi. Report of a case of overwhelming post-splenectomy infection caused by severe sepsis [J]. , 2015, 35(12): 1931-. |
[11] | SHEN Zi-jin, DONG Rong. Value of protective mechanical ventilation for alleviating symptoms of general anesthesia patients with high risk of postoperative pulmonary complications [J]. , 2015, 35(11): 1632-. |
[12] | Song Lei, YE Lei, ZHANG Yu, et al. Comparative study on assessing sedation level of mechanically ventilated patients by bispectral index and sedation scoring systems [J]. , 2014, 34(12): 1796-. |
[13] | RUAN Li-li, DU Jun-jun, LIN Yan, et al. Significance of CD64 index for early diagnosis of neonatal sepsis [J]. , 2014, 34(10): 1503-. |
[14] | LU Hua-xiang, JIA Yi-tao, YAO Min, et al. Application of thrombomodulin in treatment of sepsis [J]. , 2013, 33(7): 1039-. |
[15] | LIANG Meng-fan, WANG Xue-min, XUE Ying, et al. Effects of glutamine on secretion suppression of RAW 264.7 cells induced by mesenteric lymph in rats with sepsis [J]. , 2012, 32(11): 1472-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||