上海交通大学学报(医学版), 2023, 43(1): 36-43 doi: 10.3969/j.issn.1674-8115.2023.01.005

论著 · 临床研究

短期GnRH脉冲治疗对先天性低促性腺激素性性腺功能减退症青少年期男性患者垂体⁃睾丸功能的作用

王斐,, 龚艳, 许丽雅, 刘庆旭, 李妍, 郭盛, 李嫔,

上海市儿童医院,上海交通大学医学院附属儿童医院内分泌科,上海 200062

Effect of short-term GnRH pulse therapy on pituitary-testicular function in adolescent male patients with congenital hypogonadotropic hypogonadism

WANG Fei,, GONG Yan, XU Liya, LIU Qingxu, LI Yan, GUO Sheng, LI Pin,

Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China

通讯作者: 李 嫔,电子信箱:lipin21@126.com

编委: 瞿麟平

收稿日期: 2022-07-18   接受日期: 2022-11-09   网络出版日期: 2022-12-20

基金资助: 上海市“科技创新行动计划”医学创新研究专项重点项目.  21Y21901000
上海市“促进市级医院临床技能与临床创新能力三年行动计划”疑难疾病精准诊治攻关项目.  SHDC2020CR2058B

Corresponding authors: LI Pin,E-mail:lipin21@126.com.

Received: 2022-07-18   Accepted: 2022-11-09   Online: 2022-12-20

作者简介 About authors

王 斐(1983—),女,副主任医师,硕士;电子信箱:w-fly0620@163.com。 E-mail:w-fly0620 @163.com

摘要

目的·探讨短期促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)脉冲治疗对先天性低促性腺激素性性腺功能减退症(congenital hypogonadotropic hypogonadism,CHH)青少年期男性患者垂体及睾丸功能的作用。方法·回顾性研究2016年1月—2021年6月接受GnRH脉冲治疗的CHH青少年期男性患者20例,收集患者临床资料。治疗方法为皮下持续脉冲泵给予戈那瑞林治疗1周(20例),其中5例患者持续治疗3个月;剂量为每个脉冲8~10 μg,脉冲间隔90 min。于GnRH脉冲治疗前及治疗1周、1个月和3个月时,检测促黄体生成素(luteinizing hormone,LH)、促卵泡刺激素(follicle-stimulating hormone,FSH)、睾酮水平;治疗3个月时测量睾丸体积变化。20例CHH患者均进行了全外显子基因测序。结果·20例CHH患者就诊年龄为14.35(14.08,15.31)岁,临床均表现为幼稚型睾丸、小阴茎,其他还伴有肥胖(12/20)、嗅觉障碍(9/20)、胰岛素抵抗(4/20)、隐睾(4/20)、身材矮小(3/20)等。患者身高为161.79(154.90,173.25)cm,体质量指数为23.80(20.51,27.46)kg/m2,睾丸体积为0.91(0.55,1.25)mL。抑制素B为39.67(11.29,64.97)pg/mL,LH基础值为0.20(0.10,0.30)IU/L,FSH基础值为0.87(0.23,0.89)IU/L,睾酮基础值为0.92(0.38,1.49)nmol/L。持续GnRH脉冲治疗1周后,20例患者LH、FSH的基值和峰值以及睾酮峰值均显著升高(均P<0.05)。其中接受3个月治疗的5例患者治疗1周、1个月、3个月时,LH、FSH的基值和峰值均呈逐渐升高趋势;治疗3个月时LH、FSH基值和峰值,以及睾酮峰值均比治疗前显著增高(均P<0.05),睾丸体积也显著增大(P=0.004)。20例患者中仅14例检测到基因突变,分别为人成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFR1)突变7例、anosmin 1蛋白基因(anosmin 1,ANOS1)突变4例、前动力蛋白2受体(prokineticin receptor 2,PROKR2)突变2例、前动力蛋白2(prokineticin 2,PROK2)突变1例。GnRH脉冲治疗1周对FGFR1突变和ANOS1突变患者垂体-睾丸功能的影响差异无统计学意义。结论·青少年期男性CHH患者接受持续GnRH脉冲治疗1周后垂体-睾丸功能出现应答,治疗3个月有助于该类患者青春期第二性征的诱导。

关键词: 低促性腺激素性性腺功能减退症 ; 促性腺激素释放激素 ; 脉冲治疗 ; 青少年期

Abstract

Objective ·To investigate the effect of short-term gonadotropin-releasing hormone (GnRH) pulse therapy on pituitary and testicular function in the adolescent male patients with congenital hypogonadotropic hypogonadism (CHH). Methods ·A retrospective study was conducted on 20 adolescent male patients with CHH who received GnRH pulse therapy from January 2016 to June 2021, and their clinical data were collected. They were treated with subcutaneous continuous pulsed administration of gonadorelin by the pump for 1 week (20 cases), of which 5 cases were treated for 3 months. The dose was 8‒10 μg per pulse, and the pulse interval was 90 min. The levels of luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone were measured before GnRH pulse therapy at 1 week, 1 month and 3 months after treatment. After 3 months of treatment, the testicular volume was measured. All 20 patients with CHH underwent whole exome sequencing. Results ·The age of 20 CHH patients was 14.35 (14.08, 15.31) years old. The clinical manifestations were infantile testis (20/20) and micropenis (20/20), followed by obesity (12/20), dysosmia (9/20), insulin resistance (4/20), cryptorchidism (4/20), and short stature (3/20). The patients' height was 161.79 (154.90, 173.25) cm, body mass index was 23.80 (20.51, 27.46) kg/m2, and testicular volume was 0.91 (0.55, 1.25) mL. Inhibin B was 39.67 (11.29, 64.97) pg/mL; the base values of LH, FSH and testosterone before therapy were 0.20 (0.10, 0.30) IU/L, 0.87 (0.23, 0.89) IU/L, and 0.92 (0.38, 1.49) nmol/L, respectively. After 1 week of continuous GnRH pulse therapy, the base and peak values of LH and FSH and the peak value of testosterone in the 20 patients significantly increased (all P<0.05). In the 5 patients treated for 3 months, the base values and peak values of LH and FSH gradually increased with the prolongation of treatment time. After 3 months of treatment, the base values and peak values of LH and FSH, and the peak value of testosterone were significantly higher than those before treatment (all P<0.05), and the testicular volume was also significantly increased (P=0.004). Gene mutations were detected in only 14 of 20 patients, including fibroblast growth factor receptor 1 (FGFR1) mutations in 7 cases, anosmin 1 (ANOS1) mutations in 4 cases, prokineticin receptor 2 (PROKR2) mutations in 2 cases, and a prokineticin 2 (PROK2) mutation in 1 case. There was no significant difference of the effect of GnRH pulse therapy for 1 week on pituitary-testicular function between the patients with FGFR1 mutations and ANOS1 mutations. Conclusion ·The continuous GnRH pulse therapy for 1 week can make pituitary-testicular function respond in adolescent male CHH patients; the treatment for 3 months helps to induce the secondary sexual characteristics of puberty.

Keywords: hypogonadotropic hypogonadism ; gonadotropin-releasing hormone (GnRH) ; pulse therapy ; adolescent

PDF (1820KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王斐, 龚艳, 许丽雅, 刘庆旭, 李妍, 郭盛, 李嫔. 短期GnRH脉冲治疗对先天性低促性腺激素性性腺功能减退症青少年期男性患者垂体⁃睾丸功能的作用. 上海交通大学学报(医学版)[J], 2023, 43(1): 36-43 doi:10.3969/j.issn.1674-8115.2023.01.005

WANG Fei, GONG Yan, XU Liya, LIU Qingxu, LI Yan, GUO Sheng, LI Pin. Effect of short-term GnRH pulse therapy on pituitary-testicular function in adolescent male patients with congenital hypogonadotropic hypogonadism. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(1): 36-43 doi:10.3969/j.issn.1674-8115.2023.01.005

先天性低促性腺激素性性腺功能减退症(congenital hypogonadotropic hypogonadism,CHH),也称为特发性低促性腺激素性性腺功能减退症(idiopathic hypogonadotropic hypogonadism,IHH),是由于先天性下丘脑促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)合成、分泌或作用障碍,或GnRH神经元迁移异常导致垂体促性腺激素分泌减少,最终导致性腺功能低下。该病呈散发性(约70%)或家族性(约30%),遗传方式包括常染色体显性遗传、常染色体隐性遗传、X连锁隐性遗传、寡基因遗传模式等1-2。据国外报道2,CHH总发病率为1/10万~10/10万,男性发病率估计为1/4 000~1/1 50003。CHH男性患者临床表现为小阴茎、隐睾、促性腺激素和性激素水平低下。

GnRH脉冲治疗相对于传统疗法更符合人体生理性GnRH脉冲式的分泌形式,主要用于有生育需求的CHH患者4,也可用于青春期诱导。已有研究5指出该疗法用于青少年CHH患者后睾丸体积增长速度优于促性腺激素治疗者。然而目前GnRH脉冲治疗在青少年中的应用价值仍缺乏临床证据。因此,本研究拟回顾上海市儿童医院20例CHH青少年期男性患者的临床资料,动态分析短期持续GnRH脉冲治疗对垂体-睾丸功能的作用效果,以及不同基因型患者经GnRH脉冲治疗后效果的差异性。

1 对象与方法

1.1 研究对象

回顾2016年1月—2021年6月于上海市儿童医院内分泌科门诊就诊或住院,自愿接受GnRH脉冲泵治疗的CHH青少年期男性患者。纳入标准:① 男性。② 年龄≥14岁。③ Tanner分期仍处于G1期(睾丸体积<3 mL),阴毛发育处于PH1期3;或骨龄≥12岁时仍无性腺发育征象;或已出现第二性征但青春期发育停滞,性征、性腺发育落后于正常发育阶段(尤其是部分性CHH患者常出现此特征)。④ 生化检查特点为促黄体生成素(luteinizing hormone,LH)、促卵泡刺激素(follicle-stimulating hormone,FSH)和睾酮(testosterone)为青春期前水平。⑤ 染色体核型正常。⑥ 嗅球、嗅神经及嗅神经束等可能存在发育异常。⑦ 临床表型为小阴茎、幼稚型睾丸、隐睾或尿道下裂;除此之外,或伴有嗅觉障碍、听力异常、唇裂、骨骼缺陷、肾脏缺如、牙齿缺如、共济失调等6。⑧ CHH相关致病基因检测可能存在异常。排除标准:① 下丘脑或垂体占位病变或损伤。② 功能性低促性腺激素性性腺功能减退症(主要见于慢性全身性疾病、甲状腺功能减退、过度运动、营养不良、饮食障碍等疾病)。③ 多种垂体前叶激素缺乏。④ 高促性腺激素性性腺功能减退症。收集纳入对象的基础临床资料。

1.2 体格检查

包括身高、体质量指数(body mass index,BMI)、第二性征发育情况(Tanner分期)。使用睾丸计量仪测量睾丸体积。嗅觉测试为辨别75%乙醇、白醋、水和洗发香波的气味。

1.3 实验室检查及影像学检查

检测外周血LH、FSH、睾酮、胰岛素样生长因子(insulin like growth factor-1,IGF-1)、抑制素B(inhibin B,INHB)水平;并进行GnRH激发试验(戈那瑞林)、人绒毛膜促性腺激素(human chorionic gonadotrophin,HCG)激发试验。行垂体、嗅球和嗅沟的MRI检查,睾丸超声检查。

1.4 治疗方案

GnRH脉冲输注泵(上海微创生命医学科技有限公司,型号LF.S.1.1)7皮下输注戈那瑞林,剂量为每个脉冲8~10 μg,脉冲间隔90 min5。20例CHH患者均接受持续GnRH脉冲治疗1周,其中5例患者因治疗1周后垂体-睾丸功能反应低于平均水平,自愿接受持续GnRH脉冲治疗3个月。

1.5 临床观察评价指标

在治疗前(20例),治疗1周(20例)、1个月(5例)、3个月(5例)时,检测患者LH、FSH和睾酮水平。治疗前为无泵状态,治疗后的检测均为带泵状态;每次检测6个时间点,分别为-15、0、25、45、90、180 min。LH和FSH均取最低值作为基值,最高值作为峰值;睾酮仅取最高值(峰值)。治疗3个月时测量5例患者睾丸体积。

1.6 基因遗传学分析

全外显子组序列和拷贝数分析8;平均覆盖深度>20×,覆盖广度为99.7%。使用ABI 3100测序仪对先证者的家庭成员及上海市儿童医院体检的100名健康儿童对照进行Sanger测序验证。应用DNAstar 5.0软件将结果与美国国家生物信息中心(National Center for Biotechnology Information,NCBI)参考序列进行比对,确定变异。新突变鉴定依据人类基因突变数据库(Human Gene Mutation Database,HGMD)、ClinVar数据库,以及外显子组整合数据库(Exome Aggregation Consortium,ExAC)。根据美国医学遗传学与基因组学学会(American College of Medical Genetics and Genomics,ACMG)变异分类指南,评估变异分类。

1.7 统计学分析

采用GraphPad Prism 8.0软件进行数据分析和绘图。采用SPSS 25.0软件对数据进行统计学分析。对定量资料的正态分布进行检验。如符合正态分布,数据用x±s表示,采用配对t检验;如不符合正态分布,数据用MQ1Q3)表示,采用Mann-Whitney U检验。P<0.05表示差异有统计学意义。

2 结果

2.1 患者基础临床特征

20例CHH患者就诊年龄为14.35(14.08,15.31) 岁,所有患者均表现为幼稚型睾丸和小阴茎,其他还伴有肥胖(12/20)、嗅觉障碍(9/20)、胰岛素抵抗(4/20)、隐睾(4/20)、身材矮小(身高标准差积分<-2,3/20)、听力异常(2/20)、牙齿发育异常(1/20)。查体身高为161.79(154.90,173.25) cm,BMI为23.80(20.51,27.46) kg/m2,睾丸体积为0.91(0.55,1.25) mL。骨龄为14.0(13.0,14.5) 岁(其中3例矮小患者骨龄均落后实际年龄1年),IGF-1为306.71(257.0,352.5) ng/mL,INHB为39.67(11.29,64.97) pg/mL。GnRH激发试验:LH激发前为0.20(0.10,0.30) IU/L,激发后峰值为1.79(0.99,2.64) IU/L;FSH激发前为0.87(0.23,0.89) IU/L,激发后峰值为3.93(2.82,4.35) IU/L。HCG激发试验:睾酮激发前为0.92(0.38,1.49) nmol/L,激发后为1.88(1.09,2.19) nmol/L,激发后与激发前睾酮的比值为1.41(0.15,3.55)。

2.2 持续GnRH脉冲治疗1周后的激素水平变化

持续GnRH脉冲治疗1周后,患者LH和FSH的基值及峰值、睾酮水平均较治疗前显著升高,差异均有统计学意义(图1,均P<0.05)。治疗前和治疗1周后:LH基值分别为(0.33±0.41)IU/L和(1.58±1.23)IU/L(t=5.512,P=0.000),LH峰值分别为(0.62±0.99)IU/L和(2.24±1.70)IU/L(t=4.792,P=0.000);FSH基值分别为(0.87±1.15)IU/L和(4.33±1.94)IU/L(t=7.455,P=0.000),FSH峰值分别为(1.19±1.41)IU/L和(5.02±2.19)IU/L(t=6.939,P=0.000);睾酮峰值分别为(0.92±0.54)nmol/L和(1.23±0.61)nmol/L(t=2.751,P=0.013)。

图1

图1   CHH患者持续GnRH脉冲刺激1周后LH、FSH和睾酮水平的变化 (n=20)

Note: A. Level of LH. B. Level of FSH. C. Level of testosterone. P=0.000, P=0.013.

Fig 1   Changes of LH, FSH and testosterone levels in the adolescent boys with CHH after continuous GnRH pulse therapy for 1 week (n=20)


2.3 持续GnRH脉冲治疗3个月后的激素水平变化

5例CHH患者持续GnRH脉冲在治疗前和治疗1周、1个月、3个月时的LH和FSH的基值、峰值,以及睾酮的峰值变化见图2;治疗前和治疗3个月时睾丸体积分别为(1.23±0.74)mL和(3.08±1.20)mL。由此可见,治疗1周后,LH、FSH的基值和峰值升高显著(均P<0.05),但睾酮升高不明显(P>0.05);治疗1个月后,FSH基值和峰值升高显著(均P<0.05),LH基值和峰值、睾酮水平升高差异无统计学意义(均P>0.05);治疗3个月后,LH、FSH基值和峰值以及睾酮水平均显著升高(均P<0.05),睾丸体积显著增大(P=0.004)。

图2

图2   CHH患者持续GnRH脉冲治疗3个月期间LH、FSH和睾酮水平的变化 (n=5)

Note: A. LH base value. B. LH peak value. C. FSH base value. D. FSH peak value. E. Testosterone level. P=0.023,P=0.005, P=0.014, P=0.012, P=0.006, P=0.022, P=0.004, P=0.045, compared with the level before GnRH pulse therapy.

Fig 2   Changes of LH, FSH and testosterone levels in the adolescent boys with CHH during the continuous GnRH pulse therapy for 3 months (n=5)


2.4 CHH基因型与临床表型

20例CHH患者均进行了基因检测,其中14例检测到了基因突变(表1),包括4种CHH相关致病基因的突变,分别为人成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFR1)、anosmin-1蛋白(anosmin 1,ANOS1)、前动力蛋白受体2(prokineticin receptor 2,PROKR2)、前动力蛋白2(prokineticin 2,PROK2)。14例患者中发现2个未报道的新突变。

表1   14CHH患者的基因突变

Tab 1  Gene variants in 14 CHH patients

GeneInheritanceVariantAmino acidType of variantPathogenicitySource of variant
FGFR1ADc.1695_1696 insTp.Lys566TerHeterozygousPDe novo
FGFR1ADc.25G>Ap.Gly9SerHeterozygousVUSMother
FGFR1ADc.761G>Ap.Arg254GlnHeterozygousLPFather
FGFR1ADc.963dupAp.Glu322Argfs*13HeterozygousPDe novo
FGFR1ADc.350A>Gp.Asn117SerHeterozygousVUSMother
FGFR1ADc.580G>Tp.Gly194CysHeterozygousVUSDe novo
FGFR1ADc.1981C>Tp.Arg661*HeterozygousPDe novo
ANOS1XLRc.1267C>Tp.Arg423*HemigygotePMother
ANOS1XLRc.1897C>Tp.Arg631TerHemigygotePMother
ANOS1XLRc.1525delAp.Ser509Valfs*40HemigygotePDe novo
ANOS1XLRc.463A>Gp.Asn155AspHemigygoteVUSDe novo
PROKR2ADc.991G>Ap.Val331MetHeterozygousVUSMother
PROKR2ADc.533G>Cp.Trp178SerHeterozygousVUSDe novo
PROK2ADc.223-4C>AUnknownHeterozygousVUSDe novo

Note: AD—autosomal dominant inheritance; XLR—X-linked recessive inheritance; P—pathogenic; LP—likely pathogenic; VUS—variant of uncertain significance. These mutations correspond to NCBI reference sequences, as follows: FGFR1 (NM_001174064.1), ANOS1 (NM_000216.4), PROKR2 (NM_144773.3), and PROK2 (NM_001126128.1).

新窗口打开| 下载CSV


14例患者中7例携带FGFR1基因突变,包括4个错义突变、1个插入、1个重复、1个终止突变,其中1例为新突变c.25G>A(p.Gly9Ser);4例携带ANOS1基因突变,包括2个错义突变、1个缺失、1个终止突变,其中1例为自发新突变c.463A>G(p.Asn155Asp);2例携带PROKR2基因突变,均为错义突变;1例携带PROK2基因突变,为剪切突变。

PROKR2突变及PROK2突变例数较少,仅就FGFR1基因突变与ANOS1基因突变患者的临床表型进行比较分析(表2)。FGFR1突变患者的身高高于ANOS1突变患者,差异有统计学意义(P=0.014),此外ANOS1突变患者隐睾(1/4)和嗅觉障碍(2/4)比例略高于FGFR1突变患者(分别为1/7和2/7)。比较2种基因突变类型的患者GnRH泵脉冲治疗1周对垂体-睾丸功能的影响,即治疗前后LH和FSH的基值、峰值,以及睾酮峰值的变化,发现治疗前后差异均无统计学意义(P>0.05)。

表2   FGFR1ANOS1 基因突变型CHH患者临床表型的比较

Tab 2  Comparison of clinical phenotypes between the CHH patients with FGFR1 and ANOS1 gene mutation

IndexGene mutationStatistical valueP value
FGFR1n=7)ANOS1n=4)
Age/year14.90 (14.33, 15.42)14.75 (14.42, 15.39)0.3780.705
BMI/(kg·m-226.01 (22.89, 27.92)22.66 (15.71, 29.78)0.7560.450
Height/cm168.86 (162.80, 175.00)152.10 (147.90, 155.70)2.4570.014
Cryptorchid/n11
Dysosmia/n22
Testicular volume/mL1.12 (0.49, 2.00)0.86 (0.43, 1.24)0.2130.831
INHB/(pg·mL-131.03 (10.08, 53.92)41.09 (2.23, 79.84)0.1890.850
ΔLH base value/(IU·L-10.82 (0.35, 1.98)0.71 (0.41, 2.09)0.0950.925
ΔLH peak value/(IU·L-11.12 (0.56, 2.85)1.20 (0.59, 3.81)0.1890.850
ΔFSH base value/(IU·L-12.59 (1.79, 4.75)2.16 (-0.06, 3.85)1.3230.186
ΔFSH peak value/(IU·L-12.66 (1.67, 5.72)2.53 (-0.05, 5.10)0.5670.571
ΔTestosterone peak value/(nmol·L-11.41 (0.90, 2.16)1.48 (0.78, 2.00)0.0950.927

Note:Differential values of hormone levels before and 1 week after treatment.

新窗口打开| 下载CSV


3 讨论

CHH由于下丘脑GnRH脉冲分泌障碍导致雄激素不足,新生儿及儿童期患者主要临床表现为隐睾和小阴茎9,这是儿童CHH重要的诊断线索,比成人患者更常见;若还伴有其他症状,如嗅觉障碍、唇/腭裂或并指(趾)畸形、牙齿缺如、听力异常、肾发育异常、双手联动或骨骼异常等则需高度怀疑。诊断关键在于该类患者出生后的3~6个月(即“小青春期”),该阶段会出现促性腺激素和性激素水平低下10。CHH男性患者多因青春期延迟就诊,即14周岁时仍无第二性征或发育停滞,表现为小阴茎或幼稚型睾丸。本研究中纳入的CHH患者除了青春期延迟表现外,还包括其他一些临床特征。① 肥胖:12例合并肥胖,其中4例合并胰岛素抵抗,可能与雄激素影响能量代谢有关。② 嗅觉障碍:9例伴有嗅觉障碍;CHH合并嗅觉障碍又称为卡尔曼综合征(Kallmann syndrome),这与CHH致病基因型有关。③ 身材矮小:3例患者身材矮小,且骨龄均落后于实际年龄1年,这可能与雄激素影响软骨形成及骨代谢有关。④ 隐睾:4例患者存在隐睾,其中3例检测到CHH相关基因突变,分别为FGFR1、ANOS1、PROKR2;1例未检测到基因突变。

由于部分CHH患者可能出现下丘脑-垂体-性腺轴功能的自行恢复,即可逆性CHH,且与体质性青春发育延迟(constitutional delay of growth and puberty,CDGP)之间存在重叠现象,因此遗传学分析尤为重要。目前已报道30余种CHH基因变异,但近50%遗传病因仍未明确6。CHH根据有无嗅觉障碍分为嗅觉丧失型(即卡尔曼综合征)和嗅觉正常型。卡尔曼综合征占CHH的50%~60%,患病率约为1/4.8万10-11,相关的基因有ANOS1、信号素3A(semaphorin 3A,SEMA3A)11-13;嗅觉正常型CHH相关的基因有kisspeptin 1蛋白(kisspeptin 1,KISS1)及其受体基因等14-15;既可表现为嗅觉丧失型又可为正常型的CHH,相关基因有FGFR1PROK2PROKR216。目前国内大样本研究报道CHH最常见的致病基因为FGFR1PROKR2CHD7(chromodomain helicase DNA binding protein 7)和ANOS116。本研究20例CHH患者中14例检测到基因突变,7例为FGFR1突变,4例为ANOS1突变,2例为PROKR2突变,1例为PROK2突变。其相关临床表型研究显示:① 垂体-睾丸功能障碍。曾有研究912报道ANOS1突变的卡尔曼综合征患者小阴茎、隐睾和幼稚型睾丸的发生率较高,治疗预后差。FGFR1突变患者易出现隐睾17。本研究中7例FGFR1突变患者与4例ANOS1突变患者均存在小阴茎,各有1例隐睾;2种基因突变患者GnRH脉冲治疗1周后,垂体-睾酮功能的反应无明显差异。② 嗅觉障碍。本研究中9例CHH患者存在嗅觉障碍,分别携带ANOS1(2例)、FGFR1(2例)、PROK2(1例)和PROK2(1例)基因突变,另有3例未检测到基因突变,提示嗅觉障碍与基因型并不完全匹配,可能与可变外显率和差异表现度有关118。③ 身高发育。本研究中FGFR1突变患者身高显著高于ANOS1突变患者,这与ANOS1突变临床表型较严重相符。由此可见,CHH基因型和临床表型之间并非简单的对应关系。本研究的对象因只纳入了接受GnRH泵治疗的患者,故不能完全体现CHH的突变基因谱。

除了基因诊断外,目前多项研究19-23将GnRH激发试验、HCG激发试验、LH基础值、睾丸体积及INHB作为CHH诊断的依据,以及与CDGP鉴别诊断的方法。2015年BINDER等21提出,LH基础值<0.3 IU/L联合INHB<111 pg/mL对CHH诊断具有较高价值。2017年VARIMO等23将鉴别青春期前CHH男孩与CDGP男孩的临界值定为睾丸体积1.1 mL,GnRH激发试验LH峰值4.3 IU/L,以及基础INHB水平60 pg/mL。本研究的20例CHH患者LH基础值为0.20(0.10,0.30) IU/L,睾丸体积为0.91(0.55,1.25) mL,INHB为39.67(11.29,64.97) pg/mL,GnRH激发试验LH峰值为1.79(0.99,2.64) IU/L,均符合上述文献中界定的范围。对于未检测到相关基因突变的CHH患者,这些单一指标及激发试验仅提示垂体-睾丸功能反应低下,且由于对象的差异,不同文献中指标界定的范围也有所不同,诊断上仍缺乏一定的可靠性。本研究利用GnRH泵模拟生理性GnRH脉冲,通过给予持续脉冲治疗1周后,观察到CHH青少年期男性患者的LH、FSH基值和峰值,睾酮峰值均较治疗前显著升高,提示垂体-睾丸轴可以对GnRH产生反应。由此,一方面可排除垂体疾病造成的性腺功能低下;另一方面,持续GnRH脉冲治疗1周后可以尽量避免因“惰性”垂体对单次GnRH激发的不敏感导致的误判,具有一定的鉴别诊断意义。临床上可考虑作为一种加强的诊断刺激试验。

目前治疗CHH的药物主要有3种:性激素、促性腺激素(包括HCG、重组LH、重组FSH)和GnRH624。对于婴儿和青春期前的CHH男童,目前治疗方案有:① 雄激素治疗,应注意兼顾成年终身高最大化。② HCG治疗,已被证明对隐睾治疗有效,但高剂量的HCG治疗对生精细胞不利,可导致生精细胞过度凋亡,降低未来恢复生育能力的可能性25。③ 重组LH+重组FSH治疗,可用于“小青春期”激素替代;可刺激未成熟支持细胞增殖,诱导睾丸发育及下降,有利于隐睾纠正,阴茎增长,可最大程度保护未来生育力3。青少年期CHH男性患者治疗目标是诱导男性化,达到最佳成年终身高,维护正常心理发展。治疗方案尚无统一的国际共识,目前主要有:① HCG+重组FSH。该疗法正逐渐成为主流,可改善未来精子的产生能力626。② HCG/人尿促性腺激素(human menopausal gonadotropin,HMG)。该疗法可有效治疗CHH青少年期男性患者27,但长期应用可使治疗敏感性降低。③ GnRH脉冲治疗5。本研究探索性观察5例CHH青少年期男性患者接受GnRH脉冲泵持续治疗3个月后垂体-睾丸功能的反应,发现治疗1周、1个月、3个月后LH、FSH水平持续升高,但睾酮水平直至治疗3个月后才明显升高,且睾丸体积也明显增大。由此看来,持续GnRH脉冲治疗3个月可有效改善垂体-睾丸功能,有利于青春期第二性征的诱导,可作为今后治疗效果观察的窗口期;同时,对于这些患者在兼顾身高生长的恰当时机,给予性激素替代或促性腺激素治疗,待到生育年龄可选择GnRH长期连续治疗。

CHH青少年期男性患者接受持续GnRH泵脉冲治疗1周后,垂体-睾丸功能出现应答,且FGFR1突变与ANOS1突变患者治疗反应性无明显差别;GnRH脉冲治疗3个月有助于CHH男性患者青春期第二性征的诱导,然而对CHH青少年期患者的远期治疗效果,即对成年生殖功能的影响仍有待进一步探讨。

作者贡献声明

李嫔、王斐参与实验设计;王斐、龚艳、刘庆旭、李妍参与临床数据收集;李嫔、郭盛、许丽雅参与病例治疗和随访;李嫔、王斐参与论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

The study was designed by LI Pin and WANG Fei. WANG Fei, GONG Yan, LIU Qingxu, and LI Yan participated in the clinical data collection. LI Pin, GUO Sheng, and XU Liya participated in the treatment and follow-up. The manuscript was drafted and revised by LI Pin and WANG Fei. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

CANGIANO B, SWEE D S, QUINTON R, et al. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease[J]. Hum Genet, 2021, 140(1): 77-111.

[本文引用: 2]

BIANCO S D C, KAISER U B. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism[J]. Nat Rev Endocrinol, 2009, 5(10): 569-576.

[本文引用: 2]

SWEE D S, QUINTON R. Current concepts surrounding neonatal hormone therapy for boys with congenital hypogonadotropic hypogonadism[J]. Expert Rev Endocrinol Metab, 2022, 17(1): 47-61.

[本文引用: 3]

HAO M, NIE M, YU B Q, et al. Gonadotropin treatment for male partial congenital hypogonadotropic hypogonadism in Chinese patients[J]. Asian J Androl, 2020, 22(4): 390-395.

[本文引用: 1]

GONG C X, LIU Y, QIN M, et al. Pulsatile GnRH is superior to hCG in therapeutic efficacy in adolescent boys with hypogonadotropic hypogonadodism[J]. J Clin Endocrinol Metab, 2015, 100(7): 2793-2799.

[本文引用: 3]

YOUNG J, XU C, PAPADAKIS G E, et al. Clinical management of congenital hypogonadotropic hypogonadism[J]. Endocr Rev, 2019, 40(2): 669-710.

[本文引用: 4]

孙首悦, 王卫庆, 蒋怡然, 等. 微量泵脉冲输注戈那瑞林治疗特发性低促性腺激素性性腺功能减退症[J]. 中华内分泌代谢杂志, 2011, 27(8): 654-658.

[本文引用: 1]

SUN S Y, WANG W Q, JIANG Y R, et al. Treatment of idiopathic hypogonadotropic hypogonadism with pulse infusion of gonadorelin via micro pump[J]. Chinese Journal of Endocrinology and Metabolism, 2011, 27(8): 654-658.

[本文引用: 1]

GACH A, PINKIER I, SAŁACIŃSKA K, et al. Identification of gene variants in a cohort of hypogonadotropic hypogonadism: diagnostic utility of custom NGS panel and WES in unravelling genetic complexity of the disease[J]. Mol Cell Endocrinol, 2020, 517: 110968.

[本文引用: 1]

WANG Y, GONG C X, QIN M, et al. Clinical and genetic features of 64 young male paediatric patients with congenital hypogonadotropic hypogonadism[J]. Clin Endocrinol (Oxf), 2017, 87(6): 757-766.

[本文引用: 2]

MAIONE L, DWYER A A, FRANCOU B, et al. Genetics in endocrinology: genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing[J]. Eur J Endocrinol, 2018, 178(3): R55-R80.

[本文引用: 2]

AMATO L G L, MONTENEGRO L R, LERARIO A M, et al. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism[J]. Eur J Endocrinol, 2019, 181(2): 103-119.

[本文引用: 2]

GACH A, PINKIER I, SZARRAS-CZAPNIK M, et al. Expanding the mutational spectrum of monogenic hypogonadotropic hypogonadism: novel mutations in ANOS1 and FGFR1 genes[J]. Reprod Biol Endocrinol, 2020, 18(1): 8.

[本文引用: 1]

LIU Q X, YIN X Q, LI P. Clinical, hormonal, and genetic characteristics of 25 Chinese patients with idiopathic hypogonadotropic hypogonadism[J]. BMC Endocr Disord, 2022, 22(1): 30.

[本文引用: 1]

FESTA A, UMANO G R, MIRAGLIA DEL GIUDICE E, et al. Genetic evaluation of patients with delayed puberty and congenital hypogonadotropic hypogonadism: is it worthy of consideration?[J]. Front Endocrinol (Lausanne), 2020, 11: 253.

[本文引用: 1]

KIM J H, SEO G H, KIM G H, et al. Targeted gene panel sequencing for molecular diagnosis of Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism[J]. Exp Clin Endocrinol Diabetes, 2019, 127(8): 538-544.

[本文引用: 1]

WANG Y, QIN M, FAN L J, et al. Correlation analysis of genotypes and phenotypes in Chinese male pediatric patients with congenital hypogonadotropic hypogonadism[J]. Front Endocrinol (Lausanne), 2022, 13: 846801.

[本文引用: 2]

LI S Y, ZHAO Y L, NIE M, et al. Clinical characteristics and spermatogenesis in patients with congenital hypogonadotropic hypogonadism caused by FGFR1 mutations[J]. Int J Endocrinol, 2020, 2020: 8873532.

[本文引用: 1]

NEOCLEOUS V, FANIS P, TOUMBA M, et al. GnRH deficient patients with congenital hypogonadotropic hypogonadism: novel genetic findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A genes in a case series and review of the literature[J]. Front Endocrinol (Lausanne), 2020, 11: 626.

[本文引用: 1]

MOSBAH H, BOUVATTIER C, MAIONE L, et al. GnRH stimulation testing and serum inhibin B in males: insufficient specificity for discriminating between congenital hypogonadotropic hypogonadism from constitutional delay of growth and puberty[J]. Hum Reprod, 2020, 35(10): 2312-2322.

[本文引用: 1]

SEGAL T Y, MEHTA A, ANAZODO A, et al. Role of gonadotropin-releasing hormone and human chorionic gonadotropin stimulation tests in differentiating patients with hypogonadotropic hypogonadism from those with constitutional delay of growth and puberty[J]. J Clin Endocrinol Metab, 2009, 94(3): 780-785.

BINDER G, SCHWEIZER R, BLUMENSTOCK G, et al. Inhibin B plus LH vs GnRH agonist test for distinguishing constitutional delay of growth and puberty from isolated hypogonadotropic hypogonadism in boys[J]. Clin Endocrinol (Oxf), 2015, 82(1): 100-105.

[本文引用: 1]

GAO Y T, DU Q, LIU L Y, et al. Serum inhibin B for differentiating between congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty: a systematic review and meta-analysis[J]. Endocrine, 2021, 72(3): 633-643.

VARIMO T, MIETTINEN P J, KÄNSÄKOSKI J, et al. Congenital hypogonadotropic hypogonadism, functional hypogonadotropism or constitutional delay of growth and puberty? An analysis of a large patient series from a single tertiary center[J]. Hum Reprod, 2017, 32(1): 147-153.

[本文引用: 2]

中华医学会内分泌学分会性腺学组. 特发性低促性腺激素性性腺功能减退症诊治专家共识[J]. 中华内科杂志, 2015, 54(8): 739-744.

[本文引用: 1]

Division of Gonadal Disease, Chinese Society of Endocrinology. Expert consensus on the diagnosis and treatment of idiopathic hypogonadotropic hypogonadism[J]. Chinese Journal of Internal Medicine, 2015, 54(8): 739-744.

[本文引用: 1]

SHAH R, PATIL V, SARATHI V, et al. Prior testosterone replacement therapy may impact spermatogenic response to combined gonadotropin therapy in severe congenital hypogonadotropic hypogonadism[J]. Pituitary, 2021, 24(3): 326-333.

[本文引用: 1]

中华医学会儿科学分会内分泌遗传代谢学组. 性发育异常的儿科内分泌诊断与治疗共识[J]. 中华儿科杂志, 2019, 57(6): 410-418.

[本文引用: 1]

The Subspecialty Group of Endocrinologic, Hereditary and Metabolic Diseases, the Society of Pediatrics, Chinese Medical Association. Consensus statement on the diagnosis and endocrine treatment of children with disorder of sex development[J]. Chinese Journal of Pediatrics, 2019, 57(6): 410-418.

[本文引用: 1]

LIU Y, REN X Y, PENG Y G, et al. Efficacy and safety of human chorionic gonadotropin combined with human menopausal gonadotropin and a gonadotropin-releasing hormone pump for male adolescents with congenital hypogonadotropic hypogonadism[J]. Chin Med J (Engl), 2021, 134(10): 1152-1159.

[本文引用: 1]

/