上海交通大学学报(医学版), 2023, 43(10): 1236-1244 doi: 10.3969/j.issn.1674-8115.2023.10.003

论著 · 基础研究

靶向SOX9调控弥漫性大B细胞淋巴瘤代谢重编程的研究

张漪蓉,1,2, 魏玮庆2, 马皎,2, 张雪,1

1.上海中医药大学交叉科学研究院,上海 201203

2.上海交通大学基础医学院生物化学与分子细胞生物学系,上海 200025

Research on the role of SOX9 in regulating metabolic reprogramming in diffuse large B cell lymphoma

ZHANG Yirong,1,2, WEI Weiqing2, MA Jiao,2, ZHANG Xue,1

1.Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

2.Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University College of Basic Medical Sciences, Shanghai 200025, China

通讯作者: 张 雪,电子信箱:xuezhang@shutcm.edu.cn马 皎,电子信箱:drjiaoma@shsmu.edu.cn

编委: 张慧俊

收稿日期: 2023-04-06   接受日期: 2023-05-22   网络出版日期: 2023-10-28

基金资助: 上海市自然科学基金.  23ZR1436100

Corresponding authors: ZHANG Xue, E-mail:xuezhang@shutcm.edu.cnMA Jiao, E-mail:drjiaoma@shsmu.edu.cn.

Received: 2023-04-06   Accepted: 2023-05-22   Online: 2023-10-28

作者简介 About authors

张漪蓉(1996—),女,硕士生;电子信箱:rongrongz@sjtu.edu.cn。 E-mail:rongrongz@sjtu.edu.cn

摘要

目的·探索弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)中差异表达的性别决定区Y框转录因子9(SRY-box transcription factor 9,SOX9)基因所起到的作用,尤其是在生发中心B细胞(germinal center B-cell,GCB)来源亚型中对代谢重编程的调控作用。方法·选取NCICCR-DLBCL数据库中的481例DLBCL患者的临床信息和基因表达谱数据,使用R语言4.1.3版本进行数据分析与可视化,并基于RNA-seq测序表达量的细胞组织来源亚型(cell of origin subtype,COO)分类算法进行分类;使用ABC/GCB特征注释基因集,通过基因集富集分析(gene set enrichment analysis,GSEA)对分类进行验证。以SOX9的表达量高低将ABC和GCB亚组分别二分类。使用DEseq2包进行差异分析。使用KEGG(Kyoto Encyclopedia of Genes and Genomes)与Hallmark注释集分析SOX9与DLBCL的代谢的关系。采用Kaplan-Meier方法绘制生存曲线。采用GEPIA2进行泛癌分析。采用ESTIMATE包进行微环境评分分析。结果·481例DLBCL患者样本中,481例均有RNA-seq的表达量数据,421例有临床分期,335例有国际预后指数(international prognostic index,IPI)评分,234例有生存数据。分类得出ABC亚型232例(48.2%)、GCB亚型173例(36.0%)、未分类76例(15.8%),与数据库声明的比例相符,经富集分析验证符合ABC/GCB表达谱特征。SOX9低表达量组与SOX9高表达量组相比,总生存期更短,预后分数更差。泛癌分析示该现象亦可见于其他类型肿瘤。差异分析显示,在GCB亚型中,与SOX9高表达量组相比,SOX9低表达量组中有上调基因156个、下调基因1 826个。对于细胞代谢水平的变化,下调基因富集于糖酵解。结论·在ABC-DLBCL中,SOX9基因通过调控代谢重编程影响ABC-DLBCL的生物学特征。低表达SOX9的DLBCL,预示着肿瘤中糖酵解减少;其肿瘤基质细胞浸润程度更低,并且有着更差的预后。

关键词: 性别决定区Y框转录因子9 ; 弥漫性大B细胞淋巴瘤 ; 代谢重编程

Abstract

Objective ·To explore the role played by the differentially expressed SRY-box transcription factor 9 (SOX9) gene in diffuse large B cell lymphoma (DLBCL), particularly in the regulation of metabolic reprogramming in the germinal center B-cell (GCB) like subtype. Methods ·The clinical information and gene expression profile data of 481 DLBCL patients retrieved from the NCICCR-DLBCL database were included. Data analysis and visualisation were performed by using R language version 4.1.3. The classification was performed by using a cell of origin subtype (COO) classification algorithm based on RNA-seq sequencing of expression. ABC/GCB features were used to annotate gene sets, and the classification was verified by gene set enrichment analysis. The ABC and GCB subgroup was dichotomised based on the mean expression of SOX9. Differential analysis was performed by using the DEseq2 package. The relationship between SOX9 and ABC-DLBCL metabolism was analysed by using KEGG (Kyoto Encyclopedia of Genes and Genomes) with the Hallmark annotation set. The survival curves were plotted by using the Kaplan-Meier method. The pan-cancer analysis was performed by using GEPIA2. The microenvironmental scoring analysis was performed by the ESTIMATE package. Results ·Of the 481 DLBCL patient samples, all the patients had RNA-seq expression data, 421 had clinical staging, 335 had international prognostic index (IPI) scores and 234 had survival data. The classification yielded 232 (48.2%) ABC subtypes, 173 (36.0%) GCB subtypes and 76 (15.8%) unclassified, consistent with the proportions declared in the database, and the enrichment analysis was verified to be consistent with the ABC/GCB expression profile. Compared to the high SOX9 expression group, the overall survival was shorter in the low SOX9 expression group and the prognostic score was worse. The pan-cancer analysis showed that this phenomenon was also seen in other tumor types. The differential analysis showed that there were 156 upregulated genes and 1 826 downregulated genes in the GCB subtype in the low SOX9 expression group, compared to the high SOX9 expression group. For metabolic processes, down-regulated genes were enriched in glycolysis. Conclusion ·In the ABC subtype of DLBCL, the SOX9 gene affects the biological features of ABC-DLBCL by regulating metabolic reprogramming, and low expression of SOX9 in DLBCL, possibly caused by high methylation, predicts decreased glycolysis in tumors. The proportion of tumor stromal cells decreases, showing a worse prognosis.

Keywords: SRY-box transcription factor 9 (SOX9) ; diffuse large B cell lymphoma (DLBCL) ; metabolic reprogramming

PDF (5499KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张漪蓉, 魏玮庆, 马皎, 张雪. 靶向SOX9调控弥漫性大B细胞淋巴瘤代谢重编程的研究. 上海交通大学学报(医学版)[J], 2023, 43(10): 1236-1244 doi:10.3969/j.issn.1674-8115.2023.10.003

ZHANG Yirong, WEI Weiqing, MA Jiao, ZHANG Xue. Research on the role of SOX9 in regulating metabolic reprogramming in diffuse large B cell lymphoma. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(10): 1236-1244 doi:10.3969/j.issn.1674-8115.2023.10.003

弥漫性大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)是成人中最常见的淋巴瘤,具备很强的异质性,在形态学特点和生物学行为等方面均有多样化表现,对以蒽环类药物为基础的经典化学治疗(化疗)方案的预后差异明显1。故此前的研究基于基因表达特征定义了2种DLBCL亚型:生发中心B细胞(germinal center B-cell,GCB)亚型和活化B细胞(activated B-cell,ABC)亚型,GCB亚型的预后与对化疗的敏感度显著优于ABC亚型1。两者具备不同的遗传学基础、不同的分子生物学特征,故DLBCL的两种亚型也被视作不同的疾病,GCB淋巴瘤通常被认为起源于GCB,而ABC淋巴瘤起源于晚期GCB或浆母细胞的B细胞2,但这些肿瘤的起源细胞在功能上尚未得到严格定义。有研究从表观遗传角度出发解释这两种亚型的起源,鉴定了一组基因[肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、性别决定区Y框转录因子9(SRY-box transcription factor 9,SOX9)等16个],它们在ABC和GCB的甲基化间存在显著差异并与其表达呈负相关,并且可以明确区分两种亚型3。因此了解上述基因在DLBCL发生发展中的功能与作用,将有助于理解DLBCL的发生发展过程,解释ABC与GCB亚型的起源与差异,对于明确此类患者发病机制及预后相关危险因素有着潜在临床意义,为靶向SOX9治疗DLBCL提供更多的可能性。

代谢重编程所致的能量代谢改变,是肿瘤普遍存在的特征之一。主要表现为氧化还原代谢异常、葡萄糖代谢异常、脂肪酸代谢异常等4。肿瘤的代谢重编程通过改变肿瘤细胞的能量代谢方式增强肿瘤的抗逆性,增强营养物质的吸收以能量提供,肿瘤细胞迅速增殖并在不断变化的环境中存活5,以满足其增加的能量需求6。DLBCL是一种侵袭性恶性肿瘤,高度依赖能量供应从而在不同的环境条件下生存7。近年来,越来越多的证据表明,适应性代谢重编程是淋巴瘤增殖过程中能量产生和细胞内生物合成所必需的,这种适应性癌症代谢可用于早期诊断和癌症治疗8

SOX9基因表达有明显的组织特异性,许多报道描述了SOX9在多种已知类型的癌症中表达缺失9,包括套细胞淋巴瘤10、滤泡细胞淋巴瘤11、黑色素瘤12-1314-15,其在抑制肿瘤细胞生长、增殖和肿瘤发生与复发中起到重要作用。本文从SOX9基因入手,重点阐述其在DLBCL中对于代谢重编程的调控作用,为靶向SOX9治疗DLBCL提供线索。

1 材料与方法

1.1 实验材料

1.1.1 公共数据库

从GDC门户网站(https://portal.gdc.cancer.gov/repository)获得NCICCR-DLBCL数据库中可公开访问的481例临床诊断为DLBCL患者的临床信息和基因表达谱数据16。这些患者中,481例均有RNA测序(RNA sequencing,RNA-seq)的表达量数据,421例有临床分期,335例有国际预后指数(international prognostic index,IPI)评分,234例有生存数据17-18。GEPIA2(http://gepia2.cancer-pku.cn/#index)与PrognoScan(http://dna00.bio.kyutech.ac.jp/PrognoScan/,last updated:2019/04/07)用于泛癌分析。

1.1.2 DLBCL细胞系

OCI-LY1细胞在补充有20%胎牛血清(fetal bovine serum,FBS)和100 µg/mL青霉素/链霉素的Iscove's Modified Dulbecco's Medium(IMDM)中培养。Karpas-422细胞在补充有20%FBS和100 µg/mL青霉素/链霉素的RPMI1640培养基培养。所有的细胞都在5%CO2、37 ℃的二氧化碳加湿培养箱中维持。

1.2 实验方法

1.2.1 ABC/GCB亚型分类算法

采用细胞组织来源亚型(cell of origin subtype,COO)分类算法进行ABC/GCB亚型分类。该算法由REDDY等19于2017年提出,基于RNA-seq所测得表达谱数据,以FPKM(fragments per kilobase of exon per million reads mapped)作为测量值,分位数归一化和log2转化的基因表达测量值在基因间进行z归一化。本研究通过分别取ABC、GCB亚型样本中基因表达z分数的平均值来计算每个样本的ABC分数和GCB分数,以ABC分数与GCB分数的差值作为综合亚型分数。如果综合亚型分数>0.25且其GCB分数<0.75,则样本被归类为ABC;如果综合亚型分数<-0.25且ABC分数<0.75,则将其归类为GCB。其余样本属于未分类组。

1.2.2 差异分析

使用R包DESeq2进行差异分析,以差异倍数(fold change,FC)对数的绝对值|log2FC|>1、多重检验的错误发现率(false discovery rate,FDR)<0.05为条件筛选ABC-DLBCL中低表达SOX9和高表达SOX9组中的差异基因(以中位FPKM值区分表达量高低,其中高表达SOX9组作为对照组),并绘制火山图。

1.2.3 富集分析与注释基因集来源

使用软件GSEA 4.1.0版进行基因富集分析。用于验证ABC/GCB分类的注释基因集来源于signatureDB(https://lymphochip.nih.gov/signaturedb/20。用于差异基因功能富集的Hallmark基因集和KEGG基因集来源于MSigDB v6.0 (The Broad Molecular Signatures Database)21

1.2.4 生存分析

基于SOX9表达水平,使用Kaplan-Meier法分析患者总生存期,用Log-rank检验估计显著性。

1.2.5 肿瘤浸润

使用R包ESTIMATE计算肿瘤的浸润评分,包括基质评分(stromal score)、免疫评分(immune score)和肿瘤纯度(ESTIMATE score or tumor purity)22。使用t检验计算显著性差异,并用Holm-Sidak法进行多重检验矫正(α=0.05)。

1.2.6 RNA抽提和实时荧光定量PCR

RNA抽提:使用TRIzol试剂(天根生化科技有限公司)裂解DLBCL细胞系样本提取总RNA。采用NanoDrop分析RNA纯度并测定RNA浓度,而后用FastKing gDNA Dispelling RT SuperMix(天根生化科技有限公司)对1 μg的总RNA进行反转录,并使用SYBR green master mix与特异性预设引物(Takara,日本)进行实时荧光定量PCR(quantitative real-time PCR,qPCR)。对于定量分析,使用2-ΔΔCT值法将目标基因值与β-actin基因表达进行归一化。具体引物序列见表1

表1   糖酵解相关引物序列

Tab 1  Primers for glycolysis

GeneForward primer (5'→3')Reverse primer (5'→3')
NT5EAAGGACTGATCGAGCCACTCGGAAGTGTATCCAACGATTCCCA
EGFRCCCACTCATGCTCTACAACCCTCGCACTTCTTACACTTGCGG
VCANGTAACCCATGCGCTACATAAAGTGGCAAAGTAGGCATCGTTGAAA
COL5A1GCCCGGATGTCGCTTACAGAAATGCAGACGCAGGGTACAG
GPC1TGAAGCTGGTCTACTGTGCTCCCCAGAACTTGTCGGTGATGA
CLDN3AACACCATTATCCGGGACTTCTGCGGAGTAGACGACCTTGG
SDC1CTGCCGCAAATTGTGGCTACTGAGCCGGAGAAGTTGTCAGA
GPC3ATTGGCAAGTTATGTGCCCATTTCGGCTGGATAAGGTTTCTTC
GPC4GTGGGAAATGTGAACCTGGAACGAGGGACATCTCCGAAGG
PKP2ATGACATGCTAAAGGCTGGCAGGGAGCTGTACTGTGCTGTTC

NoteNT5E5'-nucleotidase, ecto; EGFRepidermal growth factor receptor; VCANversican; COL5A1collagen, type V, alpha 1; GPC1glypican-1; CLDN3claudin 3; SDC1syndecan-1; PKP2plakophilin 2.

新窗口打开| 下载CSV


1.2.7 蛋白质印迹法

收集2×106个细胞,用PBS洗2遍,加入100 µL细胞裂解缓冲液(含20 mmol/L Tris-HCl pH 8.0、150 mmol/L NaCl、0.5%NP-40、2.5 mmol/L EDTA和1%蛋白酶抑制剂),行冰上超声10 s、3次,13 000×g离心后取上清液。使用BCA蛋白定量试剂盒(宝日医生物技术有限公司)进行蛋白质浓度测定。使用电泳仪和电转仪将蛋白转至聚偏二氟乙烯膜(polyvinylidene fluoride,PVDF),5%脱脂牛奶封闭1 h后,按说明书使用比例加入相应的抗体,在4 ℃下摇床孵育过夜。TBST洗3次后加入对应的二抗,TBST洗3次后进行蛋白质印迹分析。

2 结果

2.1 NCICCR队列样本的细胞来源亚型分类

首先将研究对象精确分类为DLBCL的特定亚型:ABC和GCB。使用R语言将基于RNA-seq测定表达谱的分类算法应用于481例样本,分类得出ABC亚型232例(48.2%)、GCB亚型173例(36.0%)、未分类76例(15.8%)。应用DLBCL亚型分化基因集(ABC-DLBCL-1、ABC-DLBCL-2、ABC-DLBCL-3、ABC-DLBCL-4,GCB-DLBCL-1、GCB-DLBCL-2、GCB-DLBCL-3)进行GSEA富集,分类于ABC亚型的样本富集于ABC-DLBCL-4、ABC-DLBCL-3、ABC-DLBCL-1,分类于GCB亚型的样本富集于GCB-DLBCL-3,富集显著性极佳(P<0.001,FDR<0.001),如图1所示。与原队列相似的分类比例和显著的富集结果共同表明ABC/GCB亚型分类准确。

图1

图1   ABC/GCB亚型分类结果的验证

Note: The classification for ABC/GCB subtypes was obtained by a classifier based on transcriptome. GSEA analysis was used for the validation.

Fig 1   Validation for the classification of ABC/GCB subtypes classification


2.2 SOX9DLBCLABC/GCB亚型中的表达水平及其与DLBCL预后的关系

从上述分类所得232例ABC亚型中提取的临床数据,共有男性140例,女性92例;存活186例,死亡46例,其中84例记录有末次随访时间;临床分期Ⅰ期24例,Ⅱ期59例,Ⅲ期48例,Ⅳ期65例,未报告或未知36例;IPI评分低危32例,中低危46例,中高危42例,高危31例,未报告81例。依据SOX9表达量分组并绘图,如图2所示。SOX9表达量高低组间总生存期与IPI评分存在差异,数据显示在ABC-DLBCL和GCB-DLBCL中SOX9的低表达与更短的总生存期、更低的IPI评分相关,但差异不具有统计学意义(P>0.05)。

图2

图2   SOX9 表达对ABC亚型的DLBCL患者生存的影响

Note: A. Kaplan-Meier survival curve comparing the overall survival time for different SOX9 expression groups (upper 50% vs lower 50%) in GCB-DLBCL from NCICCR-DLBCL patient cohort. B. Distribution of IPI scores between different SOX9 groups (upper 50% vs lower 50%) in GCB-DLBCL from the NCICCR-DLBCL patient cohort. C. Kaplan-Meier survival curve comparing the overall survival time for different SOX9 expression groups (upper 50% vs lower 50%) in ABC-DLBCL from NCICCR-DLBCL patient cohort. D. Distribution of IPI scores between different SOX9 groups (upper 50% vs lower 50%) in ABC-DLBCL from the NCICCR-DLBCL patient cohort. "Low risk" contains "Low risk" and "Low-intermediate risk" in original cohort, likewise the "High". Statistical significance was determined by Fisher's exact test.

Fig 2   SOX9's effect on DLBCL patients' survival


2.3 SOX9 基因在泛癌中的表达水平及其与预后的关系

为了进一步明确SOX9基因作为抑癌基因和指示预后的作用是否具备普遍意义,我们在不同种类肿瘤中评估了SOX9基因的低表达和预后价值。如图3A所示,基于TCGA数据库,SOX9在睾丸生殖细胞癌和皮肤黑色素瘤中的表达量要低于相应的正常组织。此外,在滤泡细胞淋巴瘤、肾上腺皮质癌和乳腺癌中也观察到,SOX9的低表达和更差的总生存期具有相关性(图3B)。

图3

图3   SOX9 在肿瘤中的表达与预后价值

Note: A. Changes of SOX9 expression between tumor samples and normal samples from testicular germ cells tumors and skin cutaneous melanoma based on TCGA database. B. Kaplan-Meier survival curve comparing the overall survival time for different SOX9 expression groups in follicular lymphoma, adrenocortical carcinoma and breast cancer. Statistical significance was determined by the Log-rank test. P=0.000.

Fig 3   Expression and prognosis value of SOX9 in various cancer types


2.4 SOX9 基因在DLBCL中相关基因分析及其标志性特征与KEGG信号通路富集与验证

对DLBCL中低表达SOX9组的差异表达基因的筛选结果:ABC亚型中共得到1 330个差异表达基因,其中上调基因有74个、下调基因有1 256个;GCB亚型中共得到共得到1 982个差异表达基因,其中上调基因有156个、下调基因有1 826个,GCB亚型的差异表达基因的火山图见图4A。将表达谱注释到Hallmark基因集与KEGG基因集,分析结果显示,除了细胞黏附、组织发生等SOX9的经典调控功能的变化外,ABC和GCB亚型中低表达SOX9组均出现了糖酵解下调的代谢变化,如图4所示。我们利用qPCR分析与糖酵解相关的基因在敲低SOX9和过表达SOX9的GCB-DLBCL细胞系中的表达情况,以验证糖酵解途径随SOX9表达量的变化。结果显示,与对照组相比,在敲低SOX9的GCB-DLBCL细胞株中,糖酵解相关基因普遍下调,而过表达的SOX9的GCB-DLBCL细胞株正好相反;进一步我们选取3个变化显著的基因进行蛋白质印迹验证,得到与qPCR类似的结果。综上所述,蛋白质印迹和qPCR的结果证实了我们对SOX9影响DLBCL糖酵解变化的预测。

图4

图4   SOX9 表达差异对GCB亚型DLBCL代谢通路的调控

Note: A. Volcano plot of differential expression analysis. B. Representative GESA plots with hallmark and KEGG as reference gene sets. C/D. Change of glycolysis was confirmed by qPCR analysis in Karpas-422 (C) and OCI-LY1 (D) cell line. P=0.000, P=0.006, P=0.016, P=0.002, P=0.003, P=0.254, P=0.036, P=0.716, P=0.496, P=0.129. E/F. Change of glycolysis was confirmed by Western blotting analysis in Karpas-422 (E) and OCI-LY1 (F) cell line.

Fig 4   Regulation of metabolic pathways by SOX9 in GCB-DLBCL


2.5 SOX9 基因与DLBCL组织浸润和免疫浸润的关系

为进一步探究该代谢变化的成因,使用ESTIMATE包计算在ABC亚型样本中的肿瘤的基质细胞浸润与免疫细胞浸润情况,结果显示在ABC亚型DLBCL中,SOX9低表达和高表达组间肿瘤纯度、免疫浸润程度基本一致,但SOX9低表达组中肿瘤基质细胞浸润程度低于SOX9高表达组。

图5

图5   表达差异 SOX9DLBCL的浸润情况

Note: Scores of stromal content, immune cell infiltration and tumor purity derived from the ESTIMATE algorithm. P=0.006.

Fig 5   Infiltration of DLBCL with different expression of SOX9


3 讨论

在本研究中,我们通过对NCICCR队列中DLBCL患者临床数据与组织样本表达谱的分析,鉴定了SOX9在DLBCL中的临床预后效应和潜在的生物学功能。SOX9可能作为DLBCL的抑癌基因发挥作用,低表达SOX9的DLBCL患者的预后差可能与其肿瘤组织中异常活化的氧化磷酸化(满足肿瘤各项生物学功能所需物质能量需求)有关。

基于HPA数据库中的IHC研究,绝大多数原发性非霍奇金性淋巴瘤组织中检测不到SOX9的表达。在癌症细胞系百科全书(Cancer Cell Line Encyclopedia,CCLE)数据库中对各细胞系表达量的测定也显示,绝大多数DLBCL细胞株的SOX9表达量极低。此前的研究鉴定了低表达SOX9是ABC亚型的特征3,而ABC亚型往往意味着更差的预后。此外有研究23发现,在DLBCL细胞中敲减SOX9将提高肿瘤组织的集落形成能力。这些观察提示SOX9的表达缺失可能促进DLBCL的发生发展,不利于患者的预后。尽管我们此前的研究表明了SOX9高表达在IGH-BCL2易位突变的DLBCL亚型中通过调控24-脱氢胆固醇还原酶(dehydrocholesterol reductase 24,DHCR24)的表达,促进GCB亚型DLBCL细胞的胆固醇代谢,从而诱导DLBCL的发生24,但我们的结果显示在DLBCL中,SOX9高表达的现象仅出现在GCB亚型的两株DLBCL细胞系中(Karpas-422和DB细胞)。在这类特定亚型中的SOX9可能通过特有机制发挥致癌效应。总之,在绝大多数的DLBCL中SOX9表达缺失的生物学效应仍有待阐述,我们的数据揭示了以前未描述的SOX9表达缺失的致癌和预后价值。

发生代谢重编程是肿瘤的标志性事件。正常分化的细胞主要依赖氧化磷酸化提供能量,但是大多数的肿瘤细胞无论在有氧体条件还是无氧条件下,都优先利用糖酵解产能,这就是著名的“Warburg效应”。有趣的是,在DLBCL中ABC和GCB两个细胞亚群产生能量途径有所不同。肿瘤基质细胞由分泌乳酸的葡萄糖依赖性细胞组成,采取糖酵解代谢;而肿瘤细胞优先输入和利用相邻细胞产生的乳酸作为主要能量来源,利用部分柠檬酸循环产生能量,采取氧化磷酸化代谢,通过不同但相互依赖的代谢表型,从而形成代谢生态系统25。我们发现低表达SOX9的ABC和GCB亚型中均出现糖酵解减弱的现象,结合SOX9调控细胞黏附的功能,推测SOX9的表达缺失可能通过调节肿瘤微环境来发挥作用,并且SOX9表达缺失中肿瘤基质细胞浸润减少这一依据也支持我们的推测。DLBCL作为造血系肿瘤,对ESTIAMTE中基质细胞浸润无明显影响,但其固有表达可能影响免疫浸润。考虑到ESTIMATE算法在计算免疫浸润得分可能并不准确22,故不能直接认为两亚组间的免疫浸润情况和肿瘤纯度一致,还需要采取其他算法进一步验证。此外,对于SOX9是否通过胞内的通路直接调控糖代谢的机制仍不可知。

表达谱差异分析表明,SOX9表达的缺失并不是随机发生的,可能特异的发生在ABC或GCB中。无论在DLBCL的GCB亚型还是ABC亚型中,SOX9表达缺失都与总生存率降低有关;并且在ABC亚型中IPI评分更差,预示着更高的风险率和更差的预后。由于SOX9表达缺失这一状态是通过ABC亚型中低于SOX9的中位表达量进行区分,而表达缺失这一状态并未被明确定义,单个基因的瞬时表达量也并不能明确反映表达状态,因此这样的区分方式不能确切代表SOX9表达缺失的状态,故而该分组可能存在异质性,表现为在富集分析中所得上调的功能基因集较少。尽管在高表达SOX9组中显著富集到了软骨发生、细胞黏附等SOX9经典功能的基因集,佐证了我们分类的准确性,但后续可能需要通过定义与SOX9表达状态密切相关的基因组来有效区分SOX9的不同表达状态,从而减少分组异质性,得到更确切的功能调控分析结果26

尽管SOX9低表达的成因尚不明确,但此前的研究发现SOX9的高甲基化可作为区别ABC亚型和GCB亚型的特征,SOX9的甲基化和表达量存在负相关3。此外,在套细胞淋巴瘤中,也观察到SOX9的甲基化同样与表达量负相关,并且SOX9高甲基化还与更多的染色体突变、更强的增殖能力、更短的总生存期存在负相关关系10。DLBCL与套细胞淋巴瘤同样作为非霍奇金淋巴瘤,两者存在类似的表观遗传学机制27。我们推测SOX9的甲基化在DLBCL中可能存在相似的现象和机制。

作者贡献声明

张漪蓉负责进行实验、分析数据和撰写手稿,魏玮庆主要负责数据分析和撰写手稿,张雪和马皎构思并指导修改该手稿。所有作者均阅读并同意了最终稿件的提交。

ZHANG Yirong was responsible for conducting experiments, analyzing data and writing the manuscript. WEI Weiqing primarily handled data analysis. ZHANG Xue and MA Jiao contributed to the conception of the manuscript and provided guidance for its revision. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

ROSENWALD A, WRIGHT G, CHAN W C, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002, 346(25): 1937-1947.

[本文引用: 2]

BEA S. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction[J]. Blood, 2005, 106(9): 3183-3190.

[本文引用: 1]

PAVLOVA N N, ZHU J J, THOMPSON C B. The hallmarks of cancer metabolism: still emerging[J]. Cell Metab, 2022, 34(3): 355-377.

[本文引用: 3]

HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.

[本文引用: 1]

CONDELLI V, CRISPO F, PIETRAFESA M, et al. HSP90 molecular chaperones, metabolic rewiring, and epigenetics: impact on tumor progression and perspective for anticancer therapy[J]. Cells, 2019, 8(6): 532.

[本文引用: 1]

SUN N Y, YANG M H. Metabolic reprogramming and epithelial-mesenchymal plasticity: opportunities and challenges for cancer therapy[J]. Front Oncol, 2020, 10: 792.

[本文引用: 1]

YIN G, LIANG Y, WANG Y, et al. mTOR complex 1 signalling regulates the balance between lipid synthesis and oxidation in hypoxia lymphocytes[J]. Biosci Rep, 2017, 37(1): BSR20160479.

[本文引用: 1]

KIRSCH B J, CHANG S J, BETENBAUGH M J, et al. Non-Hodgkin lymphoma metabolism[M]. Cham: Springer International Publishing, 2018.

[本文引用: 1]

PANDA M, TRIPATHI S K, BISWAL B K. SOX9: an emerging driving factor from cancer progression to drug resistance[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188517.

[本文引用: 1]

ENJUANES A, FERNÀNDEZ V, HERNÁNDEZ L, et al. Identification of methylated genes associated with aggressive clinicopathological features in mantle cell lymphoma[J]. PLoS One, 2011, 6(5): e19736.

[本文引用: 2]

BENNETT L B, SCHNABEL J L, KELCHEN J M, et al. DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma[J]. Genes Chromosom Cancer, 2009, 48(9): 828-841.

[本文引用: 1]

CHENG P F, SHAKHOVA O, WIDMER D S, et al. Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma[J]. Genome Biol, 2015, 16(1): 42.

[本文引用: 1]

PASSERON T, VALENCIA J C, NAMIKI T, et al. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid[J]. J Clin Invest, 2009, 119(4): 954-963.

[本文引用: 1]

PRÉVOSTEL C, RAMMAH-BOUAZZA C, TRAUCHESSEC H, et al. SOX9 is an atypical intestinal tumor suppressor controlling the oncogenic Wnt/ß-catenin signaling[J]. Oncotarget, 2016, 7(50): 82228-82243.

[本文引用: 1]

SLATTERY M L, HERRICK J S, MULLANY L E, et al. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer[J]. Genes Chromosom Cancer, 2017, 56(11): 769-787.

[本文引用: 1]

SCHMITZ R, WRIGHT G W, HUANG D W, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma[J]. N Engl J Med, 2018, 378(15): 1396-1407.

[本文引用: 1]

LEICH E, SALAVERRIA I, BEA S, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations[J]. Blood, 2009, 114(4): 826-834.

[本文引用: 1]

SOTIRIOU C, WIRAPATI P, LOI S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis[J]. J Natl Cancer Inst, 2006, 98(4): 262-272.

[本文引用: 1]

REDDY A, ZHANG J, DAVIS N S, et al. Genetic and functional drivers of diffuse large B cell lymphoma[J]. Cell, 2017, 171(2): 481-494.e15.

[本文引用: 1]

SHAFFER A L, WRIGHT G, YANG L M, et al. A library of gene expression signatures to illuminate normal and pathological lymphoid biology[J]. Immunol Rev, 2006, 210: 67-85.

[本文引用: 1]

SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550.

[本文引用: 1]

YOSHIHARA K, SHAHMORADGOLI M, MARTÍNEZ E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data[J]. Nat Commun, 2013, 4: 2612.

[本文引用: 2]

JIANG Y W, HATZI K, ELEMENTO O, et al. Enhancer profiling reveals SOX9 as a novel transcription regulator of B cell activation and DLBCL transformation[J]. Blood, 2012, 120(21): 527.

[本文引用: 1]

SHEN Y J, ZHOU J Q, NIE K, et al. Oncogenic role of the SOX9-DHCR24-cholesterol biosynthesis axis in IGH-BCL2+ diffuse large B-cell lymphomas[J]. Blood, 2022, 139(1): 73-86.

[本文引用: 1]

GOOPTU M, WHITAKER-MENEZES D, SPRANDIO J, et al. Mitochondrial and glycolytic metabolic compartmentalization in diffuse large B-cell lymphoma[J]. Semin Oncol, 2017, 44(3): 204-217.

[本文引用: 1]

LAM L T, WRIGHT G, DAVIS R E, et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-κB pathways in subtypes of diffuse large B-cell lymphoma[J]. Blood, 2008, 111(7): 3701-3713.

[本文引用: 1]

JIANG Y W, HATZI K, SHAKNOVICH R. Mechanisms of epigenetic deregulation in lymphoid neoplasms[J]. Blood, 2013, 121(21): 4271-4279.

[本文引用: 1]

/