Peritoneal metastasis is one of the important causes of death in patients with gastrointestinal cancer and is also a difficult point in clinical diagnosis and treatment. How to predict the occurrence of peritoneal metastasis in patients with high-risk factors, advance the threshold of diagnosis and treatment before the occurrence of peritoneal metastasis, and improve the survival benefit of patients is an unsolved problem in clinical work. In the case of low positive rate of cytology and difficulty in diagnosing occult peritoneal metastasis, new molecular markers and detection techniques for early diagnosis of peritoneal metastasis need to be verified. Peritoneal lavage fluid has the characteristics of less leukocyte-derived cell-free DNA interference, higher concentration of circulating tumor DNA (ctDNA), and direct contact with the primary lesion or potential peritoneal metastasis at physical distance, making it a unique advantage in gastrointestinal cancer. At present, the detection methods of ctDNA in peritoneal lavage fluid include digital PCR, epigenetic-based analysis, and next-generation sequencing. With the iteration of technology, the application of next-generation sequencing and personalized panels to ctDNA detection has not only shown great potential in predicting postoperative peritoneal metastasis, but also promoted the idea of preventive escalation treatment of peritoneal metastasis. This article reviews the current application of ctDNA to peritoneal lavage fluid in predicting peritoneal metastasis of gastrointestinal cancer.
Keywords:gastrointestinal cancer
;
peritoneal metastasis
;
peritoneal lavage fluid
;
circulating tumor DNA
BAI Long, XIA Xiang, CAO Hui, ZHANG Zizhen. Progress in application of peritoneal lavage fluid circulating tumor DNA to predicting peritoneal metastasis of gastrointestinal cancer. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(12): 1554-1561 doi:10.3969/j.issn.1674-8115.2023.12.011
微滴式数字PCR(droplet digital PCR,ddPCR)作为dPCR中的一种,可以检测血浆中约0.1%的DNA。ddPCR甚至可以对样本中的DNA进行绝对定量[30],即使在污染源引起的高野生型背景中也能保持较高的特异度和灵敏度[31]。但也因其将单个血浆样本中的单个DNA分子分析至最大化,ddPCR较适用于少量突变或较流行的热点突变鉴定,对复杂性的多点突变MRD敏感性低于NGS[27],在临床上也并非ctDNA检测的首选方法。
ZHANG Zizhen and CAO Hui proposed the topic selection and design of the article, guided the writing of the paper and proposed revisions. XIA Xiang participated in the examination of references and revised the paper. BAI Long completed literature review and analysis, and wrote the thesis. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
LEI Z, WANG J, LI Z, et al. Hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal metastasis: a multicenter propensity score-matched cohort study[J]. Chin J Cancer Res, 2020, 32(6): 794-803.
YONEMURA Y, BANDOU E, KAWAMURA T, et al. Quantitative prognostic indicators of peritoneal dissemination of gastric cancer[J]. Eur J Surg Oncol, 2006, 32(6): 602-606.
FRANKO J, SHI Q, GOLDMAN C D, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase Ⅲ trials N9741 and N9841[J]. J Clin Oncol, 2012, 30(3): 263-267.
MO S, CAI G. Multidisciplinary treatment for colorectal peritoneal metastases: review of the literature[J]. Gastroenterol Res Pract, 2016, 2016: 1516259.
KOEMANS W J, LURVINK R J, GROOTSCHOLTEN C, et al. Synchronous peritoneal metastases of gastric cancer origin: incidence, treatment and survival of a nationwide Dutch cohort[J]. Gastric Cancer, 2021, 24(4): 800-809.
BADGWELL B, BLUM M, DAS P, et al. Phase II trial of laparoscopic hyperthermic intraperitoneal chemoperfusion for peritoneal carcinomatosis or positive peritoneal cytology in patients with gastric adenocarcinoma[J]. Ann Surg Oncol, 2017, 24(11): 3338-3344.
Gastric Cancer Professional Committee. Chinese expert consensus on prevention and treatment of gastric cancer peritoneal metastasis[J]. Chinese Journal of Gastrointestinal Surgery, 2017, 20(5): 481-490.
YANG H K, JI J, HAN S U, et al. Extensive peritoneal lavage with saline after curative gastrectomy for gastric cancer (EXPEL): a multicentre randomised controlled trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(2): 120-127.
DESIDERIO J, CHAO J, MELSTROM L, et al. The 30-year experience-a meta-analysis of randomised and high-quality non-randomised studies of hyperthermic intraperitoneal chemotherapy in the treatment of gastric cancer[J]. Eur J Cancer, 2017, 79: 1-14.
XU Y, WANG Z N. Recent progress and future prospects of treatment for peritoneal metastasis in gastric cancer[J].Chinese Journal of Gastrointestinal Surgery, 2023, 26(5): 414-418.
KOŁOMAŃSKA M M, GŁUSZEK S. Free cancer cells in gastric cancer: methods of detection, clinical and prognostic importance (meta-analysis)[J]. Contemp Oncol(Pozn), 2020, 24(1):67-74.
MATSUI S, FUKUNAGA Y, SUGIYAMA Y, et al. Incidence and prognostic value of lavage cytology in colorectal cancer[J]. Dis Colon Rectum, 2022, 65(7): 894-900.
THIERRY A R, EL MESSAOUDI S, GAHAN P B, et al. Origins, structures, and functions of circulating DNA in oncology[J]. Cancer Metastasis Rev, 2016, 35(3): 347-376.
HEITZER E, HAQUE I S, ROBERTS C E S, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology[J]. Nat Rev Genet, 2019, 20(2): 71-88.
PENG Y, MEI W, MA K, et al. Circulating tumor DNA and minimal residual disease (MRD) in solid tumors: current horizons and future perspectives[J]. Front Oncol, 2021, 11: 763790.
CHIN R I, CHEN K, USMANI A, et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA)[J]. Mol Diagn Ther, 2019, 23(3): 311-331.
YAO W, MEI C, NAN X, et al. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study[J]. Gene, 2016, 590(1): 142-148.
LIU M C, OXNARD G R, KLEIN E A, et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA[J]. Ann Oncol, 2020, 31(6): 745-759.
MODING E J, NABET B Y, ALIZADEH A A, et al. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease[J]. Cancer Discov, 2021, 11(12): 2968-2986.
TAIEB J, TALY V, VERNEREY D, et al. Analysis of circulating tumour DNA (ctDNA) from patients enrolled in the IDEA-FRANCE phase Ⅲ trial: prognostic and predictive value for adjuvant treatment duration[J]. Ann Oncol, 2019, 30: v867.
PARIKH A R, VAN SEVENTER E E, SIRAVEGNA G, et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer[J]. Clin Cancer Res, 2021, 27(20): 5586-5594.
KOJABAD A A, FARZANEHPOUR M, GALEH H E G, et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives[J]. J Med Virol, 2021, 93(7): 4182-4197.
COCHRAN R L, CRAVERO K, CHU D, et al. Analysis of BRCA2 loss of heterozygosity in tumor tissue using droplet digital polymerase chain reaction[J]. Hum Pathol, 2014, 45(7): 1546-1550.
WANG T B, LI Z, ZHAO D B. Diagnostic methods for peritoneal molecular residual disease in gastric cancer[J]. .Chinese Journal of Gastrointestinal Surgery, 2023, 26(5): 419-422.
HONORÉ N, GALOT R, VAN MARCKE C, et al. Liquid biopsy to detect minimal residual disease: methodology and impact[J]. Cancers (Basel), 2021, 13(21): 5364.
KURTZ D M, SOO J, CO TING KEH L, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA[J]. Nat Biotechnol, 2021, 39(12): 1537-1547.
ZHOU H, ZHU L, SONG J, et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer[J]. Mol Cancer, 2022, 21(1): 86.
LO Y M, CHAN K C, SUN H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus[J]. Sci Transl Med, 2010, 2(61): 61ra91.
TONG L, DING N, TONG X, et al. Tumor-derived DNA from pleural effusion supernatant as a promising alternative to tumor tissue in genomic profiling of advanced lung cancer[J]. Theranostics, 2019, 9(19): 5532-5541.
TU H Y, LI Y S, BAI X Y, et al. Genetic profiling of cell-free DNA from pleural effusion in advanced lung cancer as a surrogate for tumor tissue and revealed additional clinical actionable targets[J]. Clin Lung Cancer, 2022, 23(2): 135-142.
VAN'T ERVE I, ROVERS K P, CONSTANTINIDES A, et al. Detection of tumor-derived cell-free DNA from colorectal cancer peritoneal metastases in plasma and peritoneal fluid[J]. J Pathol Clin Res, 2021, 7(3): 203-208.
ZENG T, HUANG Z, YU X, et al. Combining methylated SDC2 test in stool DNA, fecal immunochemical test, and tumor markers improves early detection of colorectal neoplasms[J]. Front Oncol, 2023, 13: 1166796.
HIRAKI M, KITAJIMA Y, SATO S, et al. Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer[J]. World J Gastroenterol, 2010, 16(3): 330-338.
HIRAKI M, KITAJIMA Y, KOGA Y, et al. Aberrant gene methylation is a biomarker for the detection of cancer cells in peritoneal wash samples from advanced gastric cancer patients[J]. Ann Surg Oncol, 2011, 18(10): 3013-3019.
YU Q M, WANG X B, LUO J, et al. CDH1 methylation in preoperative peritoneal washes is an independent prognostic factor for gastric cancer[J]. J Surg Oncol, 2012, 106(6): 765-771.
HAN J, LV P, YU J L, et al. Circulating methylated MINT2 promoter DNA is a potential poor prognostic factor in gastric cancer[J]. Dig Dis Sci, 2014, 59(6): 1160-1168.
YU J L, LV P, HAN J, et al. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer[J]. Arch Pathol Lab Med, 2014, 138(11): 1466-1473.
HU X Y, LING Z N, HONG L L, et al. Circulating methylated THBS1 DNAs as a novel marker for predicting peritoneal dissemination in gastric cancer[J]. J Clin Lab Anal, 2021, 35(9): e23936.
KAMIYAMA H, NODA H, TAKATA O, et al. Promoter hypermethylation of tumor-related genes in peritoneal lavage and the prognosis of patients with colorectal cancer[J]. J Surg Oncol, 2009, 100(1): 69-74.
LU F, DU G, ZHENG S, et al. Detection of CDH1 gene methylation of suspension cells in abdominal lavage fluid from colorectal cancer patients and its clinical significance[J]. Zhonghua Wei Chang Wai Ke Za Zhi, 2014, 17(11): 1133-1136.
YUAN Z, CHEN W, LIU D, et al. Peritoneal cell-free DNA as a sensitive biomarker for detection of peritoneal metastasis in colorectal cancer: a prospective diagnostic study: a prospective diagnostic study[J]. Clin Epigenetics, 2023, 15(1): 65.
LEICK K M, KAZARIAN A G, RAJPUT M, et al. Peritoneal cell-free tumor DNA as biomarker for peritoneal surface malignancies[J]. Ann Surg Oncol, 2020, 27(13): 5065-5071.
LÓPEZ-ROJO I, OLMEDILLAS-LÓPEZ S, VILLAREJO CAMPOS P, et al. Liquid biopsy in peritoneal fluid and plasma as a prognostic factor in advanced colorectal and appendiceal tumors after complete cytoreduction and hyperthermic intraperitoneal chemotherapy[J]. Ther Adv Med Oncol, 2020, 12: 1758835920981351.
Tumor Marker Committee of Chinese Anti-Cancer Association. Expert consensus on clinical practice of ctDNA next generation sequencing (2022 edition)[J]. Chinese Journal of Oncology Prevention and Treatment, 2022, 14(3): 240-252.
... 微滴式数字PCR(droplet digital PCR,ddPCR)作为dPCR中的一种,可以检测血浆中约0.1%的DNA.ddPCR甚至可以对样本中的DNA进行绝对定量[30],即使在污染源引起的高野生型背景中也能保持较高的特异度和灵敏度[31].但也因其将单个血浆样本中的单个DNA分子分析至最大化,ddPCR较适用于少量突变或较流行的热点突变鉴定,对复杂性的多点突变MRD敏感性低于NGS[27],在临床上也并非ctDNA检测的首选方法. ...
... 微滴式数字PCR(droplet digital PCR,ddPCR)作为dPCR中的一种,可以检测血浆中约0.1%的DNA.ddPCR甚至可以对样本中的DNA进行绝对定量[30],即使在污染源引起的高野生型背景中也能保持较高的特异度和灵敏度[31].但也因其将单个血浆样本中的单个DNA分子分析至最大化,ddPCR较适用于少量突变或较流行的热点突变鉴定,对复杂性的多点突变MRD敏感性低于NGS[27],在临床上也并非ctDNA检测的首选方法. ...
1
... 微滴式数字PCR(droplet digital PCR,ddPCR)作为dPCR中的一种,可以检测血浆中约0.1%的DNA.ddPCR甚至可以对样本中的DNA进行绝对定量[30],即使在污染源引起的高野生型背景中也能保持较高的特异度和灵敏度[31].但也因其将单个血浆样本中的单个DNA分子分析至最大化,ddPCR较适用于少量突变或较流行的热点突变鉴定,对复杂性的多点突变MRD敏感性低于NGS[27],在临床上也并非ctDNA检测的首选方法. ...