上海交通大学学报(医学版), 2023, 43(2): 171-179 doi: 10.3969/j.issn.1674-8115.2023.02.005

论著 · 基础研究

抑制肺泡上皮细胞焦亡对支气管肺发育不良新生大鼠肺泡化阻滞的改善作用

郑小雁,1, 王星云2, 张拥军,1

1.上海交通大学医学院附属新华医院新生儿科,上海 200092

2.上海交通大学医学院附属同仁医院虹桥国际医学研究院,上海 200336

Improvement of alveolarization arrest in newborn rats with bronchopulmonary dysplasia via inhibiting alveolar epithelial cell pyroptosis

ZHENG Xiaoyan,1, WANG Xingyun2, ZHANG Yongjun,1

1.Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

2.Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China

通讯作者: 张拥军,电子信箱:zhangyongjun@sjtu.edu.cn

编委: 吴洋

收稿日期: 2022-11-09   接受日期: 2023-02-06   网络出版日期: 2023-02-28

Corresponding authors: ZHANG Yongjun, E-mail:zhangyongjun@sjtu.edu.cn.

Received: 2022-11-09   Accepted: 2023-02-06   Online: 2023-02-28

作者简介 About authors

郑小雁(1996—),女,硕士生;电子信箱:varlarl@163.com。 E-mail:varlarl@163.com

摘要

目的·研究gasdermin D(GSDMD)抑制剂necrosulfonamide(NSA)通过抑制肺上皮细胞焦亡对脂多糖(lipopolysaccharide,LPS)诱导的新生大鼠支气管肺发育不良(bronchopulmonary dysplasia,BPD)肺泡化阻滞的影响。方法·将孕SD大鼠随机分为对照组、BPD组、BPD+NSA组和NSA组,羊膜腔注射LPS建立新生鼠BPD模型。取各组出生后第1、3、7日新生鼠肺组织,通过苏木精-伊红(H-E)染色观察肺泡化情况;利用免疫荧光法检测各组新生鼠肺部GSDMD-N端蛋白表达情况;荧光定量PCR法检测新生鼠肺组织中炎症因子白介素-1β(interleukin-1β,IL-1β)mRNA水平。体外培养小鼠肺泡上皮细胞系MLE-12,给予LPS以及腺苷三磷酸(adenosine triphosphate,ATP)刺激和NSA干预,CCK-8法检测MLE-12细胞活力,Hoechst 33342和碘化丙啶(propidium iodide,PI)染色法检测细胞焦亡水平,免疫荧光法检测MLE-12细胞表面活性剂蛋白C(surfactant protein C,SFTPC)和GSDMD-N端蛋白的表达情况。结果·体内实验结果显示:羊膜腔内注射LPS可导致肺发育受阻,模拟BPD的病理改变;羊膜腔内注射LPS建立的BPD模型中肺泡上皮细胞GSDMD-N端表达升高;NSA干预明显改善了BPD新生鼠的肺发育阻滞并抑制了IL-1β的mRNA表达(均P<0.05)。体外实验结果显示:LPS/ATP刺激下肺泡上皮细胞MLE-12活力下降,发生焦亡;NSA干预提高了肺泡上皮细胞活力并且抑制了焦亡(均P<0.05);NSA上调了LPS/ATP刺激下肺泡上皮细胞SFTPC的表达,抑制了LPS/ATP刺激下肺泡上皮细胞GSDMD-N端表达的上调(均P<0.05)。结论·抑制肺泡上皮细胞焦亡可改善LPS诱导的BPD新生鼠肺组织病理学改变。

关键词: 支气管肺发育不良 ; 细胞焦亡 ; gasdermin D ; 肺泡上皮细胞

Abstract

Objective ·To study the effect of gasdermin D (GSDMD) inhibitor necrosulfonamide (NSA) on alveolarization arrest in lipopolysaccharide (LPS)-induced bronchopulmonary dysplasia (BPD) newborn rats via inhibiting alveolar epithelial cell pyroptosis. Methods ·Pregnant SD rats were randomly assigned to four groups as follows: control, BPD, BPD with NSA and NSA group, and then were prepared to receive intra-amniotic injection of LPS. Lung tissues of newborn rats on the first, third and seventh day after birth were stained by hematoxylin-eosin (H-E) to observe lung development. The expressions of GSDMD-N-terminal in lungs of newborn rats in each group were detected by immunofluorescence. The mRNA levels of interleukin-1β (IL-1β) of newborn rats' lungs was detected by real-time PCR. In vitro, the mouse alveolar epithelial cell line MLE-12 was cultured and treated with LPS/adenosine triphosphate (ATP) and NSA. The cell viability of MLE-12 cells was detected by CCK-8 method, the pyroptosis was detected by Hoechst 33342 and propidium iodide (PI) staining, and the expressions of surfactant protein C (SFTPC) and GSDMD-N protein in MLE-12 cells were detected by immunofluorescence. Results ·In vivo, intra-amniotic injection of LPS hindered lung development, resulting in the pathological hallmarks of BPD. The GSDMD-N expression of alveolar epithelial cells increased in the BPD rat model established by intra-amniotic injection of LPS, while NSA treatment significantly improved the lung development of BPD rats and inhibited the IL-1β mRNA expression (both P<0.05). In vitro, the study confirmed that LPS/ATP treatment decreased the viability of alveolar epithelial cells MLE-12 and induced pyroptosis, while NSA treatment increased alveolar epithelial cell viability and inhibited pyroptosis (both P<0.05). In addition, NSA treatment upregulated the SFTPC expression and inhibited the GSDMD-N expression in LPS/ATP-stimulated alveolar epithelial cells (both P<0.05). Conclusion ·Inhibiting the alveolar epithelial cell pyroptosis can improve the alveolar development in BPD newborn rats.

Keywords: bronchopulmonary dysplasia ; pyroptosis ; gasdermin D (GSDMD) ; alveolar epithelial cell

PDF (5037KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郑小雁, 王星云, 张拥军. 抑制肺泡上皮细胞焦亡对支气管肺发育不良新生大鼠肺泡化阻滞的改善作用. 上海交通大学学报(医学版)[J], 2023, 43(2): 171-179 doi:10.3969/j.issn.1674-8115.2023.02.005

ZHENG Xiaoyan, WANG Xingyun, ZHANG Yongjun. Improvement of alveolarization arrest in newborn rats with bronchopulmonary dysplasia via inhibiting alveolar epithelial cell pyroptosis. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(2): 171-179 doi:10.3969/j.issn.1674-8115.2023.02.005

支气管肺发育不良(bronchopulmonary dysplasia,BPD)是早产儿最常见的慢性呼吸系统疾病,是在感染、高氧、机械通气等多重应激因素协同作用下,引发肺损伤与修复的失衡,最终导致了肺发育受阻1。过去30余年,BPD在新生儿重症监护病房中的发病率持续升高,且胎龄越小,发病风险越高2-3。BPD不仅影响了早产儿的生存和预后,还增加了肺动脉高压、哮喘、慢性阻塞性肺疾病、神经系统发育障碍以及心功能不全等远期并发症的发生风险,给家庭与医疗系统带来了极大的负担4。然而,现今仍缺乏特异性的BPD防治措施5。因此,进一步探究BPD发生和发展的机制,寻找有效的干预措施刻不容缓。

细胞焦亡是一种炎性含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)依赖性的细胞死亡,其特征是细胞肿胀、溶解和多种炎症因子的释放。多种炎症小体的激活可活化caspase。活性caspase一方面切割焦亡效应蛋白gasdermin D(GSDMD)形成GSDMD-N端,而GSDMD-N端在细胞膜上寡聚形成微孔,导致细胞渗透压的变化,进而发生肿胀直至细胞膜破裂;另一方面裂解白介素-1β(interleukin-1β,IL-1β)前体使其成为成熟的IL-1β,并通过GSDMD小孔释放从而引发过度炎症反应,造成组织损伤6-7。细胞焦亡在BPD的发生和发展中起到的重要作用已经被许多研究证实。NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症小体及NLRP1炎症小体被认为在BPD的发生和发展中发挥着重要作用8-9。此外,抑制caspase-1活性或IL-1β分泌均可改善BPD新生鼠的肺损伤9-10。而作为肺发育主体的肺泡上皮细胞,其焦亡引发的呼吸系统疾病也被广泛报道11-12。Necrosulfonamide(NSA)是一种GSDMD特异性抑制剂,不仅能抑制GSDMD蛋白的切割,还能抑制GSDMD-N端寡聚化和膜穿孔的形成13-14。但抑制焦亡效应蛋白GSDMD是否可以抑制肺泡上皮细胞的焦亡从而改善BPD,目前尚不清楚。因此,本研究拟探究GSDMD抑制剂NSA对羊膜腔内注射脂多糖(lipopolysaccharide,LPS)诱导的BPD新生大鼠肺发育的影响以及对其肺泡上皮细胞焦亡的抑制作用。

1 材料与方法

1.1 材料

1.1.1 实验动物与细胞来源

孕16 d SPF级Sprague Dawley(SD)大鼠购自上海吉辉实验动物有限责任公司,动物生产许可证号SCXK(沪)2017-0012。实验动物饲养及实验操作于上海交通大学医学院附属新华医院实验动物中心进行,动物使用许可证号SYXK9(沪)2013-0106。小鼠肺泡上皮细胞(MLE-12细胞)购自中国科学院上海生命科学研究院细胞资源中心。

1.1.2 主要试剂

LPS、腺苷三磷酸(adenosine triphosphate,ATP)和NSA均购于美国MedChemExpress公司;DMEM/F12培养基、胎牛血清(fetal bovine serum,FBS)、青链霉素双抗溶液(penicillin-streptomycin,PS)均购自美国Gibco公司;兔多克隆GSDMD-N端抗体购自江苏亲科生物研究中心有限公司;抗表面活性剂蛋白C(surfactant protein C,SFTPC)抗体购自美国Proteintech公司;CCK-8试剂盒、Hoechst 33342荧光染料/碘化丙啶(propidium iodide,PI)双染试剂盒和快速封闭液均购自上海碧云天生物技术有限公司。

1.2 动物实验

1.2.1 BPD动物模型建立

将孕16 d的SD大鼠平衡体质量等因素后随机分成4组,分别为对照组、BPD组、BPD+NSA组和NSA组。用1%戊巴比妥钠(40 mg/kg)对大鼠进行腹腔麻醉。待大鼠进入深麻醉状态后,腹部备皮、消毒、铺巾、逐层剪开皮肤和腹肌层,将包含胚胎的羊膜囊取出放于湿润的无菌纱布上,用玻璃针吸取分装的试剂注射入羊膜腔内(LPS和NSA的溶剂均为无菌生理盐水)。①对照组:每个羊膜腔内注射5 μL无菌生理盐水。②LPS组:每个羊膜腔内注射5 μL LPS(1 μg)溶液。③LPS+NSA组:每个羊膜腔内注射共5 μL的LPS(1 μg)和NSA(2.5 µg)混合溶液。④NSA组:每个羊膜腔内注射5 μL的NSA(2.5 µg)溶液。试剂注射完毕后,将羊膜囊回纳入腹腔,逐层缝合,手术中保持羊膜囊湿润。术后,待孕鼠转醒活动后分笼,标记组别,待孕鼠生产。

1.2.2 新生鼠肺部组织样本采集

待孕鼠分娩后,记当日为新生鼠出生后第0日(postnatal day 0,P0),待出生后1、3、7 d采集新生鼠肺组织样本。腹腔麻醉后,打开新生鼠胸腔暴露肺部,用冰PBS灌洗肺血管,用缝合线结扎右肺根部和气管,用4%多聚甲醛灌注左侧肺叶,直至肺尖边缘轻微隆起。摘除左肺上叶将其浸泡在4%多聚甲醛中进行固定,右肺放入EP管中迅速置于液氮中冻存,-80 ℃保存。

1.2.3 苏木精-伊红染色观察肺组织病理改变

左肺固定24 h后,经过脱水、浸蜡、包埋、切片、苏木精-伊红(H-E)染色、封片后,置于显微镜下观察。各组随机选取5个样本,每个样本取最大肺部横截面的3个不同层面的切片,每张切片随机选取不重叠的3个视野拍照保存。采用图像处理软件Image J进行图像处理和肺组织形态学分析的计数,统计指标包括平均肺泡数、平均次级间隔数、平均肺泡内衬间隔(mean linear intercept,MLI)。MLI的计算方法如下:经切片视野中心点画十字交叉线,测出总长度(L),计数线上的所有肺泡数(N),MLI = L/N(单位:µm)。

1.2.4 新生鼠肺组织石蜡切片免疫荧光染色

将组织石蜡包埋切片置于含柠檬酸抗原修复缓冲液的修复盒中,并使用微波热修复方法进行抗原修复。用PBS冲洗切片3次后,在室温下用封闭液封闭30 min,在切片上滴加按1∶200稀释的一抗抗GSDMD-N端抗体,切片放于湿盒内4 ℃孵育过夜。PBS洗涤3次后,切片与CY3二抗在室温避光孵育1 h,细胞核用DAPI试剂染色5 min。最后,用荧光显微镜进行观察和摄影。

1.2.5 新生鼠肺组织IL-1β mRNA水平检测

TRIzol法提取各组新生鼠肺组织的总RNA,用Hifair® V反转录酶将RNA反转录为cDNA,采用QuantStudio 3荧光定量PCR仪进行PCR扩增反应。引物由上海华津生物科技有限公司合成。IL-1β mRNA上、下游引物序列分别为5'-CTCACAGCAGCATCTCGACAAGA G-3'和5'-TCCACGGGCAAGACATAGGTAGC-3',β-肌动蛋白(β-actin)上、下游引物序列分别为5'-GGA AATCGT GCGTGACATTA-3'和5'-AGGAAGGAAGG CTGGAAGAG-3'。结果以β-actin为内参进行校正。

1.3 细胞实验

1.3.1 MLE-12细胞培养及处理

培养小鼠肺泡上皮细胞MLE-12,培养基为DMEM/F12、10% FBS、1% PS,于37 ℃、5% CO2培养箱中培养。将细胞分为对照组、LPS/ATP组、LPS/ATP+NSA组和NSA组,分别加入等量PBS和LPS(1 μg/mL)。将培养板在培养箱内孵育4 h,LPS/ATP+NSA组和NSA组再加入NSA(10 μmol/L)处理30 min,最后加入ATP(5 mmol/L)再处理1 h,收集细胞行进一步检测。

1.3.2 CCK-8法测定MLE-12细胞活力

在96孔板中接种100 µL MLE-12细胞悬液(1×105个),将细胞分为对照组、LPS/ATP组、LPS/ATP+NSA组和NSA组,按方法“1.3.1”处理细胞。弃去原培养基,加入100 µL培养基,再向每孔加入10 µL CCK-8溶液,在培养箱中培养2 h,用酶标仪测定在450 nm处的吸光度,计算细胞活力。

1.3.3 Hoechst 33342和PI染色检测MLE-12细胞焦亡水平

将细胞接种至24孔板,按方法“1.3.1”处理细胞后,弃去培养基,用PBS漂洗细胞1次,弃去PBS洗涤液。然后每孔加入1 mL细胞染色缓冲液、5 µL Hoechst 33342染色液和5 µL PI染色液,4 ℃染色20 min,PBS漂洗1次后在荧光显微镜下观察。

1.3.4 MLE-12细胞免疫荧光染色

将细胞接种至预先放有玻璃爬片的12孔板,按方法“1.3.1”处理细胞后,去除培养基,用PBS漂洗3次。加入4%多聚甲醛室温固定20 min后PBS漂洗3次。加入0.1% Triton溶液通透20 min。PBS漂洗后加入封闭液,封闭15 min。加入按1∶200稀释的抗GSDMD-N端或抗SFTPC抗体溶液,4 ℃孵育过夜,0.1% PBST漂洗3次。加入按1∶200稀释的Alexa Fluor 488二抗,室温避光孵育1 h,0.1% PBST漂洗3次。用纸巾吸去爬片上的多余水分,在载玻片上滴加含DAPI的抗荧光淬灭封片剂,将爬片放置于载玻片上避光孵育3 min,荧光显微镜下观察。

1.4 统计学分析

采用SAS 6.0软件进行统计学分析,定量资料以x±s表示。多组间比较采用单因素方差分析,两两比较采用LSD检验。P<0.05表示差异有统计学意义。

2 结果

2.1 LPS导致的新生鼠肺组织病理改变

观察肺部H-E染色切片发现,与对照组比较,BPD组肺泡发育明显阻滞,肺泡增大且结构简单化。P1、P3、P7的BPD组新生鼠平均肺泡数和平均次级间隔数较对照组新生鼠降低,MLI增大(均P<0.05),详见图1

图1

图1   羊膜腔内注射LPS导致的新生鼠肺发育阻滞观察

Note: A. The representative lung sections stained with H-E staining. B. The quantification of the terminal air spaces of lung tissues from newborn rats. C. The quantification of the secondary septa of lung tissues from newborn rats. D. The quantification of the MLI of lung tissues from newborn rats. P=0.000, P=0.010, P=0.038, P=0.004, compared with the control group.

Fig 1   Alveolar developmental arrest caused by intra-amniotic LPS injection


2.2 BPD新生鼠肺泡上皮细胞GSDMD-N端的表达

肺部切片免疫荧光染色结果(图2)显示,BPD组新生鼠肺部GSDMD-N端表达较对照组明显升高(均P<0.05),表明BPD新生鼠肺泡上皮细胞存在细胞焦亡现象。

图2

图2   BPD新生鼠肺泡上皮细胞焦亡现象观察

Note:A. Representative immunofluorescence images of GSDMD-N terminal (red) in the lungs of newborn rats. B. Quantitation of GSDMD-N terminal fluorescence intensity. P=0.007, P=0.015, P=0.033, compared with the control group.

Fig 2   Alveolar epithelial cell pyroptosis in BPD newborn rats


2.3 NSA干预下新生鼠肺组织的病理改变及 IL-1β mRNA的表达

分析肺部H-E染色切片发现,与对照组相比,BPD组表现为典型的肺泡简化,而加入NSA干预可以改善这些病理变化。与BPD组相比,BPD+NSA组平均肺泡数、平均次级间隔数增多,MLI缩小,肺泡化阻滞改善(图3A~D)(均P<0.05)。实时定量PCR结果(图3E)显示,BPD组新生鼠肺组织中的IL-1β mRNA水平较对照组增高,而NSA可以抑制肺组织IL-1β mRNA的表达(均P<0.05)。

图3

图3   NSA对新生鼠肺部病理状态和 IL-1β mRNA表达的影响

Note:A. The representative lung sections stained with H-E staining. B. The quantification of the terminal air spaces of lung tissues from newborn rats. C. The quantification of the secondary septa of lung tissues from newborn rats. D. The quantification of the MLI of lung tissues from newborn rats. E. Comparison of IL-1β mRNA among the groups. P=0.000, compared with the control group; P=0.031, P=0.049, P=0.002, P=0.040, P=0.020, P=0.024, P =0.026, P =0.014, compared with the BPD group.

Fig 3   Effects of NSA on lung pathology and expression of IL-1β mRNA in newborn rats


2.4 LPS/ATP刺激和NSA干预后肺泡上皮细胞的活力和焦亡变化

在LPS/ATP诱导肺泡上皮细胞焦亡的体外实验中,CCK-8法、Hoechst和PI染色结果(图4)显示:LPS/ATP可降低肺泡上皮细胞MLE-12的细胞活力,并且增加焦亡细胞的阳性率;而NSA干预可改善LPS/ATP导致的细胞活力下降,并且抑制LPS/ATP诱导的细胞焦亡(均P<0.05)。

图4

图4   NSALPS/ATP诱导的肺泡上皮细胞MLE-12焦亡的抑制作用

Note:A. Cell viability of MLE-12 detected by CCK-8 assay. B. Percentages of PI+ cells. C. Pyroptotic cells detected by Hoechst 33342 and PI staining. P=0.000, compared with the control group; P=0.003, P=0.008, compared with the LPS/ATP group.

Fig 4   Inhibition effect of NSA on LPS/ATP-induced pyroptosis in MLE-12 cells


2.5 LPS/ATP刺激和NSA干预后肺泡上皮细胞SFTPC的表达

免疫荧光标记结果(图5)显示,LPS/ATP作用下MLE-12中SFTPC的表达受到抑制,而加入NSA干预后SFTPC在MLE-12中的表达增加(均P< 0.05)。

图5

图5   NSA对肺泡上皮细胞MLE-12SFTPC表达的影响

Note:A. Representative immunofluorescence images of SFTPC (green) in MLE-12. B. Quantitation of SFTPC fluorescence intensity. P=0.002, compared with the control group; P=0.035, compared with the LPS/ATP group.

Fig 5   Effect of NSA treatment on SFTPC expression in MLE-12 cells


2.6 LPS/ATP刺激和NSA干预后肺泡上皮细胞GSDMD-N的表达

免疫荧光标记结果(图6)显示,LPS/ATP作用下MLE-12中GSDMD-N端的表达增加,而加入NSA干预后抑制了MLE-12中GSDMD-N端的表达(均P<0.05)。

图6

图6   NSA对肺泡上皮细胞MLE-12GSDMD-N端表达的影响

Note:A. Representative immunofluorescence images of GSDMD-N terminal (green) in MLE-12. B. Quantitation of GSDMD-N terminal fluorescence intensity. P=0.000, compared with the control group; P=0.010, compared with the LPS/ATP group.

Fig 6   Effect of NSA treatment on GSDMD-N expression in MLE-12 cells


3 讨论

BPD的发生是多种应激因素共同作用的结果,而所有BPD的诱发因素都会引发肺部损伤性炎症反应,从而抑制肺发育15。本研究中,我们首先发现羊膜腔内注射LPS能够抑制新生鼠肺部发育并引发肺泡上皮细胞焦亡;同时,我们发现应用GSDMD抑制剂NSA可以改善BPD新生鼠的肺泡发育阻滞。本研究还进一步验证了在体外水平NSA能够抑制肺泡上皮细胞焦亡,促进肺泡上皮增殖分化。因此,我们猜测抑制肺泡上皮细胞焦亡可能可以成为治疗BPD的一个有效靶点。

细胞焦亡是一种特殊的细胞程序性坏死,现逐渐被认为是脊椎动物中一种常见的先天免疫效应。适当的细胞焦亡在杀灭病原菌方面发挥着重要作用7。各种体外和体内的刺激因素均可引发细胞焦亡;然而,过度的细胞焦亡会引发多种自身免疫性和自身炎症性疾病,并且加速疾病进程16。迄今为止,越来越多的研究也证明了焦亡在呼吸系统疾病起病中的重要作用。研究8-9表明,细胞焦亡与BPD的发病密切相关,炎症小体激活在BPD中起到关键作用。已有实验证实,将高表达GSDMD-N端的细胞外囊泡移植入新生鼠体内可诱发肺部炎症反应,抑制肺发育17。更重要的是,在BPD的临床研究中,发现早产儿气管灌洗液中IL-1β水平的升高与BPD的发展密切相关818。此外,相关探索性的动物研究显示,抑制焦亡通路相关蛋白可以改善BPD新生鼠的肺泡发育,如敲除Nlrp3基因或抑制NLRP3炎症小体的激活819、抑制caspase-1活性9、敲除IL-1β基因或使用IL-1β拮抗剂10均能有效改善BPD新生鼠的肺泡发育。在本研究中,我们使用羊膜内注射LPS诱导建立新生大鼠BPD模型,免疫荧光结果显示BPD新生鼠肺泡上皮细胞GSDMD-N端表达升高,证明BPD新生鼠肺泡上皮细胞发生焦亡。这些结果表明肺泡上皮细胞焦亡与BPD的发生存在相关性,也为寻找BPD的潜在治疗方法提供了线索。

自从细胞焦亡概念提出以来,炎症性疾病和自身免疫性疾病临床研究逐渐将目光聚焦至焦亡通路,应用靶向焦亡通路的药物来治疗炎症、代谢和神经退行性疾病20-22。研究13发现,美国食品药品监督管理局批准的用于治疗乙醇依赖的药物双硫仑能有效抑制GSDMD成孔进而抑制细胞焦亡,并能有效降低脓毒症小鼠的死亡率。另一种选择性的caspase-1抑制剂VX-765(Belnacasan)已完成了在癫痫(NCT01048255)中的Ⅱ期临床试验23,结果显示VX-765治疗后癫痫发作率降低了15.6%(安慰剂组为7.0%),并且停药后还显示出延迟的有益效应。且在阿尔茨海默病的研究中发现,VX-765能防止小鼠认知障碍的发生24。这些研究显示,抑制细胞焦亡对炎症性疾病具有一定的治疗效果。在本研究中,我们也发现GSDMD抑制剂NSA干预BPD后,新生鼠肺部发育明显改善且IL-1β mRNA水平明显下调,提示了抑制肺泡上皮细胞焦亡可以改善BPD的肺泡化阻滞。

在BPD发生和发展过程中,聚集在肺内的中性粒细胞、巨噬细胞释放大量炎症介质,如IL-1β、IL-6、IL-8等,这种炎性的肺泡微环境引发了肺泡上皮细胞的死亡,抑制了肺泡的发育,从而导致了BPD25。Ⅰ型肺泡上皮细胞和Ⅱ型肺泡上皮细胞的损伤都与BPD发病密切相关26,而Ⅱ型肺泡上皮细胞具备无限增殖的潜能,不但可分泌肺泡表面活性物质,改善肺顺应性,还可定向分化为Ⅰ型肺泡上皮细胞,修复肺泡结构损伤27。Ⅱ型肺泡上皮细胞的稳态破坏,导致了肺泡修复不全,结构简单化,最终导致BPD的发生。在体外实验中,我们发现,使用NSA可抑制LPS/ATP诱导下的肺泡上皮细胞焦亡,改善细胞活力,同时可以促进Ⅱ型肺泡上皮细胞标志物SFTPC的表达;证明抑制肺泡上皮细胞焦亡可以促进肺泡上皮细胞增殖同时向Ⅱ型肺泡上皮细胞分化,从而改善肺泡发育。

综上,体内外的实验证明,利用NSA抑制GSDMD-N端表达可以抑制肺泡上皮细胞的焦亡,最终改善BPD新生鼠的肺发育。本研究结果可能为BPD的治疗提供了一个新的思路,靶向肺泡上皮细胞焦亡可能可以成为治疗BPD的有效措施。因此,进一步研究细胞焦亡对BPD的作用机制,有助于进一步探究BPD发病机制及治疗措施。

作者贡献声明

郑小雁、王星云、张拥军参与了实验设计、论文写作及修改;郑小雁负责实验操作和实验数据分析。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

The study was designed by ZHENG Xiaoyan, WANG Xingyun and ZHANG Yongjun. The research implementation and data analysis were conducted by ZHENG Xiaoyan. The manuscript was drafted and revised by ZHENG Xiaoyan, WANG Xingyun and ZHANG Yongjun. All authors have read the last version and revised and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

THÉBAUD B, GOSS K N, LAUGHON M, et al. Bronchopulmonary dysplasia [J]. Nat Rev Dis Primers, 2019, 5(1): 78.

[本文引用: 1]

STOLL B J, HANSEN N I, BELL E F, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051.

[本文引用: 1]

BELL E F, HINTZ S R, HANSEN N I, et al. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018[J]. JAMA, 2022, 327(3): 248-263.

[本文引用: 1]

ISLAM J Y, KELLER R L, ASCHNER J L, et al. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2015, 192(2): 134-156.

[本文引用: 1]

WILLIAMS E, GREENOUGH A. Advances in treating bronchopulmonary dysplasia[J]. Expert Rev Respir Med, 2019, 13(8): 727-735.

[本文引用: 1]

SHI J, GAO W, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.

[本文引用: 1]

JORGENSEN I, MIAO E A. Pyroptotic cell death defends against intracellular pathogens[J]. Immunol Rev, 2015, 265(1): 130-142.

[本文引用: 2]

LIAO J, KAPADIA V S, BROWN L S, et al. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia[J]. Nat Commun, 2015, 6: 8977.

[本文引用: 4]

DAPAAH-SIAKWAN F, ZAMBRANO R, LUO S, et al. Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 61(3): 341-354.

[本文引用: 4]

STOUCH A N, MCCOY A M, GREER R M, et al. IL-1β and inflammasome activity link inflammation to abnormal fetal airway development[J]. J Immunol, 2016, 196(8): 3411-3420.

[本文引用: 2]

KONG X, GAO M, LIU Y, et al. GSDMD-miR-223-NLRP3 axis involved in B(a)P-induced inflammatory injury of alveolar epithelial cells[J]. Ecotoxicol Environ Saf, 2022, 232: 113286.

[本文引用: 1]

WAN X P, LI J Q, WANG Y P, et al. H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells[J]. Natl Sci Rev, 2022, 9(1): nwab137.

[本文引用: 1]

HU J J, LIU X, XIA S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020, 21(7): 736-745.

[本文引用: 2]

RATHKEY J K, ZHAO J, LIU Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis[J]. Sci Immunol, 2018, 3(26): eaat2738.

[本文引用: 1]

KALIKKOT THEKKEVEEDU R, GUAMAN M C, SHIVANNA B. Bronchopulmonary dysplasia: a review of pathogenesis and pathophysiology[J]. Respir Med, 2017, 132: 170-177.

[本文引用: 1]

FRANK D, VINCE J E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26(1): 99-114.

[本文引用: 1]

ALI A, ZAMBRANO R, DUNCAN M R, et al. Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats[J]. Sci Rep, 2021, 11(1): 8791.

[本文引用: 1]

CAYABYAB R G, JONES C A, KWONG K Y, et al. Interleukin-1β in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome[J]. J Matern Fetal Neonatal Med, 2003, 14(3): 205-211.

[本文引用: 1]

ZHANG Q, RAN X, HE Y, et al. Acetate downregulates the activation of NLRP3 inflammasomes and attenuates lung injury in neonatal mice with bronchopulmonary dysplasia[J]. Front Pediatr, 2021, 8: 595157.

[本文引用: 1]

VAN OPDENBOSCH N, LAMKANFI M. Caspases in cell death, inflammation, and disease[J]. Immunity, 2019, 50(6): 1352-1364.

[本文引用: 1]

LU F, LAN Z, XIN Z, et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases[J]. J Cell Physiol, 2020, 235(4): 3207-3221.

DHANI S, ZHAO Y, ZHIVOTOVSKY B. A long way to go: caspase inhibitors in clinical use[J]. Cell Death Dis, 2021, 12(10): 949.

[本文引用: 1]

BIALER M, JOHANNESSEN S I, KUPFERBERG H J, et al. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT Ⅺ)[J]. Epilepsy Res, 2013, 103(1): 2-30.

[本文引用: 1]

FLORES J, NOËL A, FOVEAU B, et al. Pre-symptomatic caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging[J]. Nat Commun, 2020, 11(1): 4571.

[本文引用: 1]

HIRANI D, ALVIRA C M, DANOPOULOS S, et al. Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia[J]. Eur Respir J, 2022, 59(2): 2002248.

[本文引用: 1]

HOU A, FU J, YANG H, et al. Hyperoxia stimulates the transdifferentiation of type Ⅱ alveolar epithelial cells in newborn rats[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308(9): L861-L872.

[本文引用: 1]

RACKLEY C R, STRIPP B R. Building and maintaining the epithelium of the lung[J]. J Clin Invest, 2012, 122(8): 2724-2730.

[本文引用: 1]

/