Colorectal cancer (CRC) is a common malignancy with a high incidence of metastatic events in China and the world. Immunotherapy has received increasing attention as an emerging therapy in the treatment of metastatic colorectal cancer (mCRC). Immune checkpoint inhibitor (ICI) is one of the important methods, mainly represented by programmed cell death protein 1 (PD-1), programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies. The strong potential of ICIs in the treatment of mCRC has been confirmed by completed and ongoing clinical trials. The U.S. Food and Drug Administration has approved some ICIs for the first-line treatment of microsatellite instability-high (MSI-H)/mismatch repair deficient (dMMR) mCRC. ICI cannot yet replace the conventional therapy in the treatment of microsatellite stable (MSS)/mismatch repair proficient (pMMR) mCRC, but an increasing number of ICI combination programs have entered the clinical trial phase and have initially shown good clinical efficacy and application prospects. Finding new markers to identify potentially beneficial patients, validating new combination regimens, and developing new immune checkpoints are all important to the future of ICI research.
TU Juanjuan, JIN Zhiming. Research progress of immune checkpoint inhibitors in the treatment of metastatic colorectal cancer. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(2): 250-255 doi:10.3969/j.issn.1674-8115.2023.02.016
目前在mCRC治疗中已有理论研究和临床试验的ICI主要有抗程序性死亡受体1(programmed death-1,PD-1)单克隆抗体——帕博利珠单抗(pembrolizumab)、纳武利尤单抗(nivolumab)、替雷利珠单抗(tislelizumab)等,抗程序性死亡受体配体1(programmed death-ligand 1,PD-L1)单克隆抗体——阿替利珠单抗(atezolizumab)、度伐利尤单抗(durvalumab)、阿维鲁单抗(avelumab)等,以及抗细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen 4,CTLA-4)单克隆抗体——伊匹木单抗(ipilimumab)、曲美木单抗(tremelimumab)等,还有处于研究起步阶段的抗T细胞免疫球蛋白和ITIM结构域蛋白(T cell immunoglobulin and ITIM domain,TIGIT)单克隆抗体——替瑞利尤单抗(tiragolumab)。大量ICI相关的临床试验正在进行中,寄希望于大规模的转化研究构建起ICI标准治疗框架,有利于有效延长mCRC的生存期及生存质量。
1 PD-1抑制剂相关的研究进展
微卫星高不稳定性(microsatellite instability-high,MSI-H)mCRC患者的预后优势体现在错配修复缺陷(mismatch repair deficient,dMMR)导致产生大量新抗原,更容易引起免疫反应[4]。美国食品药品监督管理局(Food and Drug Administration,FDA)在2017年批准了帕博利珠单抗用于经过氟嘧啶、奥沙利铂和伊立替康治疗后仍有进展的MSI-H/dMMR mCRC[5]。美国国家综合癌症网络(National Comprehensive Cancer Network,NCCN)发表的《2021年V2版临床实践指南:结肠癌/直肠癌》[6]肯定了帕博利珠单抗在MSI-H/dMMR mCRC治疗中的一线地位。精准识别和增加可以从ICI治疗中受益的患者群体是改善mCRC总体预后的一个重要方向。使用聚合酶链反应或二代测序作为免疫组化染色的补充,可更全面地评估mCRC患者是否处于MSI-H/dMMR状态[7]。ANDRÉ等[8]针对成年mCRC患者开展的多中心的Ⅲ期临床试验(Keynote-177)评估了帕博利珠单抗和以5-FU为基础的化疗这2种药物治疗方案的差异,结果体现了免疫治疗的优越性。通过24~48个月的随访,帕博利珠单抗组的中位无进展生存期(median progression-free survival,mPFS)为16.5个月,相较之化疗组的8.2个月,此优势具有统计学意义。在完全缓解的人群中,帕博利珠单抗组有83%在24个月中达到持续缓解,这个指标在化疗组仅有35%。另外,化疗组出现的高达66%的不良反应事件,是帕博利珠单抗组的3倍。
OVERMAN等[11]关于CheckMate142的研究显示,74例不能耐受化疗或化疗后有进展的dMMR mCRC成年患者,每2周服用纳武利尤单抗3 mg/kg;经过约12个月的随访,其中51例患者(69%)的疾病控制时间(duration of disease control,DDC)达到12周及以上,超过50%的患者有12个月的无进展生存期(progression-free survival,PFS)。KIM等[12]开展的Ⅰ/Ⅰb期研究结果显示,40例接受瑞戈非尼+纳武利尤单抗的pMMR mCRC可评价患者的疾病控制率(disease control rate,DCR)为63%,mPFS和mOS分别为4.3个月和11.1个月,≥3级的TRAE发生率分别为16%(高血压)、10%(皮疹)和6%(贫血)。尽管结果显示的临床获益有限,但仍具有非常重要的临床意义,安全、可耐受并具有一定抗肿瘤疗效的联合方案增加了pMMR mCRC患者能够受益于免疫治疗的可能性。目前替雷利珠单抗应用于CRC患者的临床研究仍较少。DESAI等[13]为评估替雷利珠单抗在实体肿瘤治疗的疗效和安全性而进行的Ⅰ期临床试验(NCT02407990)的结果显示,在接受过大量治疗的晚期实体瘤患者中观察到持久的反应,其中21例CRC患者的客观缓解率(objective response rate,ORR)为14.3%(95% CI 3.05%~36.34%)。
National Health Commission of the People's Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Chinese Journal of Surgery, 2020, 58(8): 561-585.
VAN CUTSEM E, CERVANTES A, ADAM R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Ann Oncol, 2016, 27(8): 1386-1422.
ZHANG Y Y, SUN Z, MAO X X, et al. Impact of mismatch-repair deficiency on the colorectal cancer immune microenvironment[J]. Oncotarget, 2017, 8(49): 85526-85536.
MABY P, TOUGERON D, HAMIEH M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy[J]. Cancer Res, 2015, 75(17): 3446-3455.
MARCUS L, LEMERY S J, KEEGAN P, et al. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clin Cancer Res, 2019, 25(13): 3753-3758.
BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(3): 329-359.
KIM J H, KIM S Y, BAEK J Y, et al. A phase Ⅱ study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer[J]. Cancer Res Treat, 2020, 52(4): 1135-1144.
ANDRÉ T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
GOMAR M, NAJAFI M, AGHILI M, et al. Durable complete response to pembrolizumab in microsatellite stable colorectal cancer[J]. Daru, 2021, 29(2): 501-506.
OVERMAN M J, MCDERMOTT R, LEACH J L, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191.
KIM R D, KOVARI B P, MARTINEZ M, et al. A phase Ⅰ/Ⅰb study of regorafenib and nivolumab in mismatch repair proficient advanced refractory colorectal cancer[J]. Eur J Cancer, 2022, 169: 93-102.
DESAI J, DEVA S, LEE J S, et al. Phase ⅠA/ⅠB study of single-agent tislelizumab, an investigational anti-PD-1 antibody, in solid tumors[J]. J Immunother Cancer, 2020, 8(1): e000453.
TAPIA RICO G, PRICE T J. Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential[J]. Expert Opin Biol Ther, 2018, 18(4): 449-457.
ENG C, KIM T W, BENDELL J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2019, 20(6): 849-861.
METTU N B, OU F S, ZEMLA T J, et al. Assessment of capecitabine and bevacizumab with or without atezolizumab for the treatment of refractory metastatic colorectal cancer: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(2): e2149040.
TAÏEB J, ANDRÉ T, EL HAJBI F, et al. Avelumab versus standard second line treatment chemotherapy in metastatic colorectal cancer patients with microsatellite instability: the SAMCO-PRODIGE 54 randomised phase Ⅱ trial[J]. Dig Liver Dis, 2021, 53(3): 318-323.
MARTINELLI E, MARTINI G, FAMIGLIETTI V, et al. Cetuximab rechallenge plus avelumab in pretreated patients with RAS wild-type metastatic colorectal cancer: the phase 2 single-arm clinical CAVE trial[J]. JAMA Oncol, 2021, 7(10): 1529-1535.
VAN DEN EYNDE M, HUYGHE N, DE CUYPER A, et al. Interim analysis of the AVETUXIRI trial: avelumab combined with cetuximab and irinotecan for treatment of refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC)—a proof of concept, open-label, nonrandomized phase Ⅱa study[J]. J Clin Oncol, 2021, 39(3_suppl): 80.
MORSE M A, HOCHSTER H, BENSON A. Perspectives on treatment of metastatic colorectal cancer with immune checkpoint inhibitor therapy[J]. Oncologist, 2020, 25(1): 33-45.
LENZ H J, VAN CUTSEM E, LUISA LIMON M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ CheckMate 142 study[J]. J Clin Oncol, 2022, 40(2): 161-170.
FUMET J D, ISAMBERT N, HERVIEU A, et al. Phase Ⅰb/Ⅱ trial evaluating the safety, tolerability and immunological activity of durvalumab (MEDI4736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFOX in patients with metastatic colorectal cancer[J]. ESMO Open, 2018, 3(4): e000375.
CHEN E X, JONKER D J, LOREE J M, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian cancer trials group CO.26 study[J]. JAMA Oncol, 2020, 6(6): 831-838.
SEGAL N H, CERCEK A, KU G, et al. Phase Ⅱ single-arm study of durvalumab and tremelimumab with concurrent radiotherapy in patients with mismatch repair-proficient metastatic colorectal cancer[J]. Clin Cancer Res, 2021, 27(8): 2200-2208.
LIANG R P, ZHU X D, LAN T Y, et al. TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer[J]. Cancer Immunol Immunother, 2021, 70(10): 2781-2793.
THIBAUDIN M, LIMAGNE E, HAMPE L, et al. Targeting PD-L1 and TIGIT could restore intratumoral CD8 T cell function in human colorectal cancer[J]. Cancer Immunol Immunother, 2022, 71(10): 2549-2563.
KOYAMA S, AKBAY E A, LI Y Y, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints[J]. Nat Commun, 2016, 7: 10501.
MA Q, LIU J N, WU G L, et al. Co-expression of LAG3 and TIM3 identifies a potent Treg population that suppresses macrophage functions in colorectal cancer patients[J]. Clin Exp Pharmacol Physiol, 2018, 45(10): 1002-1009.
... mOS: 10.2 vs 10.3 months61.6% vs 58.7% (skeptical)NCT03186326[17] (Ⅱ)Age 18‒75 years, failure of first-line therapy, MSI-H/dMMR mCRCAvelumab vs second-line theray±targeted therapyOngoing‒NCT04561336[18] (Ⅱ)Chemotherapy-refractory, wild-type RAS, 92.2% were MSS/pMMR mCRCAvelumab+cetuximab (77)
... mOS: 10.2 vs 10.3 months61.6% vs 58.7% (skeptical)NCT03186326[17] (Ⅱ)Age 18‒75 years, failure of first-line therapy, MSI-H/dMMR mCRCAvelumab vs second-line theray±targeted therapyOngoing‒NCT04561336[18] (Ⅱ)Chemotherapy-refractory, wild-type RAS, 92.2% were MSS/pMMR mCRCAvelumab+cetuximab (77)
... mOS: 12.7 months0CheckMate142[22] (NCT04008030) (Ⅱ)MSI-H/dMMR mCRCNivolumab+low-dose ipilimumab (45)OS rate at 12, 18 and 24 months were 84.1%, 81.7% and 79.4%; PFS rate at 12, 18 and 24 months were 76.4%, 76.4% and 73.6%22% (colitis 4%, respiratory failure 2%)NCT02870920[24] (Ⅱ)Refractory CRCDurvalumab+tremelimumab (118) vs best supportive care (61)
... mOS: 12.7 months0CheckMate142[22] (NCT04008030) (Ⅱ)MSI-H/dMMR mCRCNivolumab+low-dose ipilimumab (45)OS rate at 12, 18 and 24 months were 84.1%, 81.7% and 79.4%; PFS rate at 12, 18 and 24 months were 76.4%, 76.4% and 73.6%22% (colitis 4%, respiratory failure 2%)NCT02870920[24] (Ⅱ)Refractory CRCDurvalumab+tremelimumab (118) vs best supportive care (61)