上海交通大学学报(医学版), 2023, 43(3): 350-357 doi: 10.3969/j.issn.1674-8115.2023.03.011

综述

腓骨肌萎缩症合并小脑性共济失调的临床及遗传学特点

朱啸巍,1,2, 钟平2, 曹立1,2, 栾兴华,1,2

1.上海交通大学医学院附属第六人民医院神经内科,上海 200030

2.安徽医科大学附属宿州医院神经内科,宿州 234000

Clinical and genetic characteristics of Charcot-Marie-Tooth disease with cerebellar ataxia

ZHU Xiaowei,1,2, ZHONG Ping2, CAO Li1,2, LUAN Xinghua,1,2

1.Department of Neurology, Shanghai Sixth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China

2.Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, China

通讯作者: 栾兴华,电子信箱:green_lxh@sina.com

编委: 瞿麟平

收稿日期: 2022-07-29   接受日期: 2023-03-01   网络出版日期: 2023-03-28

基金资助: 国家自然科学基金.  81870889.  82071258

Corresponding authors: LUAN Xinghua, E-mail:green_lxh@sina.com.

Received: 2022-07-29   Accepted: 2023-03-01   Online: 2023-03-28

作者简介 About authors

朱啸巍(1997—),女,硕士生;电子信箱:zhuxw@rjlab.cn。 E-mail:zhuxw@rjlab.cn

摘要

腓骨肌萎缩症(Charcot-Marie-Tooth disease,CMT)是一组以周围神经病变为主的遗传性运动感觉神经病。主要临床症状包括进行性对称性肢体远端无力、萎缩、感觉障碍和腱反射减退或消失。根据神经电生理表现和病理特点,CMT可分为以脱髓鞘为主的CMT1型和轴索病变为主的CMT2型。除了周围神经系统病变外,CMT部分表型可同时累及中枢神经系统或其他脏器;其中小脑系统受累的CMT患者同时合并小脑性共济失调,可见于神经丝蛋白轻链(neurofilament light chain,NEFL)基因突变所致的CMT1F型和CMT2E型,MORC家族CW型锌指结构蛋白2(MORC family CW-type zinc finger 2,MORC2)基因突变所致的CMT2Z型,溶质载体家族25成员46(solute carrier family 25 member 46,SLC25A46)基因突变所致的伴视神经萎缩的CMT6B型,以及多核苷酸激酶3′-磷酸酶(polynucleotide kinase 3′-phosphatase,PNKP)基因突变所致的CMT2B2型等。近年来,CMT重叠表型成为研究的热点,其中CMT合并小脑性共济失调具有高度临床异质性和遗传异质性,临床上易发生误诊。该文就合并小脑性共济失调的CMT表型的临床及遗传学特点进行综述,旨在为该类患者的早期诊断和治疗提供参考。

关键词: 腓骨肌萎缩症 ; 小脑性共济失调 ; 基因突变 ; 神经丝蛋白轻链 ; MORC家族CW型锌指结构蛋白2

Abstract

Charcot-Marie-Tooth disease (CMT) is a group of hereditary motor and sensory neuropathy predominantly with peripheral neuropathy. It is characterized by progressive symmetric distal-predominant weakness, amyotrophy, sensory loss and reduced or absent deep tendon reflexes. CMT is usually divided into CMT1 type with demyelination and CMT2 type with axonal lesions according to electrophysiological and pathological characteristics. In addition to peripheral nervous system lesions, some CMT subtypes may also involve the central nervous system or other organs. The CMT patients with cerebellar system involvement also have cerebellar ataxia which can be seen as CMT1F type and CMT2E type caused by mutations in neurofilament light chain(NEFL) gene, CMT2Z with mutations in MORC family CW-type zinc finger 2 (MORC2) gene, CMT-6B with mutations in solute carrier family 25 member 46 (SLC25A46) gene, CMT2B2 with mutations in polynucleotide kinase 3′-phosphatase (PNKP) gene and so on. In recent years, CMT overlapping phenotypes have become a hot topic of research, among which CMT with cerebellar ataxia is a clinically and genetically heterogeneous group of disorders, and is prone to misdiagnosis clinically. This article reviews the clinical and genetic characteristics of CMT with cerebellar ataxia, aiming to provide reference for the earlier recognition and therapeutic strategies.

Keywords: Charcot-Marie-Tooth disease (CMT) ; cerebellar ataxia ; gene mutation ; neurofilament light chain(NEFL) ; MORC family CW-type zinc finger 2 (MORC2)

PDF (2233KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朱啸巍, 钟平, 曹立, 栾兴华. 腓骨肌萎缩症合并小脑性共济失调的临床及遗传学特点. 上海交通大学学报(医学版)[J], 2023, 43(3): 350-357 doi:10.3969/j.issn.1674-8115.2023.03.011

ZHU Xiaowei, ZHONG Ping, CAO Li, LUAN Xinghua. Clinical and genetic characteristics of Charcot-Marie-Tooth disease with cerebellar ataxia. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(3): 350-357 doi:10.3969/j.issn.1674-8115.2023.03.011

腓骨肌萎缩症(Charcot-Marie-Tooth disease,CMT)是一组临床表型类似的遗传性运动感觉神经病,由CHARCOT、MARIE和TOOTH于1886年发现并报道。根据电生理和病理特点,CMT可分为以脱髓鞘为主的CMT1型和以轴索病变为主的CMT2型。临床上,CMT通常表现为2种形式:一种主要是以周围神经系统受累症状和体征为临床表现;另一种是以综合征或复杂疾病的形式出现,往往多系统受累,周围神经系统临床表现或亚临床改变只是表现之一。近年来,随着CMT相关疾病的谱系变化,人们对于后一种综合征形式的周围神经病的认识越来越多,重叠表型成为研究的热点1

目前为止,已有超过100个基因被确定为CMT致病基因。除周围神经组织之外,CMT也可能累及其他系统,如中枢神经系统、肌肉、骨骼和皮肤等,显示了CMT基因型-表现型的复杂性2。其中,小脑系统受累的CMT可见于神经丝蛋白轻链(neurofilament light chain,NEFL)突变所致的CMT1F型(OMIM#607734)和CMT2E型(OMIM#607684),MORC家族CW型锌指结构蛋白2(MORC family CW-type zinc finger 2,MORC2)突变所致的CMT2Z型(OMIM#616688),溶质载体家族25成员46(solute carrier family 25 member 46,SLC25A46)基因突变所致的伴视神经萎缩的CMT6B型(OMIM#616505),以及多核苷酸激酶3′-磷酸酶(polynucleotide kinase 3′-phosphatase,PNKP)基因突变所致的CMT2B2型(OMIM#605589)等。周围神经病变可能只是上述CMT表型的临床表现之一,本文对合并小脑性共济失调的CMT表型的临床及遗传学特点作一综述,旨在为CMT合并小脑性共济失调的诊治和鉴别提供参考。

1 CMT1F型和CMT2E型

NEFL基因定位于8p21,编码NEFL;2000年首次发现其突变可导致常染色体显性(autosomal dominant,AD)遗传脱髓鞘型CMT1F、AD轴索型CMT2E和介于两者之间的中间型CMT(dominant intermediate CMT G,CMTDIG;OMIM#617882)。NEFL基因相关性CMT的分类与神经电生理表现有关,与疾病机制的差异无关3-4。CMT合并小脑性共济失调常见于CMT1F和CMT2E这2种表型。

1.1 发病机制

NEFL无义突变可能导致隐性表型,错义突变可能导致显性表型5。NEFL是神经元特异性的细胞骨架蛋白,参与髓鞘形成,与轴突生长发育密切相关。NEFL包含3个主要区域:N端球状头部、α螺旋中心杆和C端尾部。其中杆状结构域是蛋白亚基(又称结构单元)组装的重要结构,而头部和尾部结构域参与神经丝组装、轴突运输和径向生长的调节(图16。NEFL是神经丝的组成部分,神经丝由亚基,NEFL,神经丝蛋白中、重链聚合而成。神经丝是神经元和轴索的主要中间丝,在轴索细胞骨架的组装和维护中起着关键作用,决定轴索的直径和周围神经的传导速度。神经丝的异常组装和转运可通过微管和动力蛋白影响轴突运输系统,轴索和细胞骨架蛋白的异常NEFL堆积导致神经元进行性变性和活力丧失,引起神经丝代谢缺陷,进而引发神经退行性疾病7-8

图1

图1   NEFL的结构示意图及突变分布

Note: CMT1F mutations are shown in blue; CMT2E mutations are shown in green and both in orange.

Fig 1   Structure diagram and mutation distribution of NEFL


1.2 临床表现

NEFL突变的CMT1F型患者常在婴儿期或儿童期起病,遗传模式以AD为主,临床特点为严重的进行性周围神经病变。最初表现为运动发育迟缓或步态障碍,其他症状包括远端肢体肌肉无力萎缩、反射减弱、张力减退、高弓足和远端感觉丧失59-10

NEFL突变的CMT2E型患者发病时间多为儿童期或青年期,遗传模式以AD为主,表现为缓慢进行性远端肌肉无力和萎缩,主要影响下肢,导致行走困难。2/3患者在发病后的20年里可出现上肢受累,患者手足部有不同程度的畸形,如爪形手、高弓足和锤状趾等。与CMT1F型患者相比,CMT2E型患者的感觉体征不明显,几乎所有患者都保留触觉、痛觉、振动觉和位置觉,但可能有手套(袜套)样感觉障碍11-12

CMT1F型和CMT2E型患者均可出现中枢神经系统症状,如小脑性共济失调、构音障碍、感音性耳聋、震颤、智力迟钝、锥体征等。共济失调步态最为常见,出现在78%的CMT1F型和50%的CMT2E型患者中13-14

1.3 神经电生理表现

NEFL突变的CMT表型分类依赖于神经电生理表现,包括正中神经的运动神经传导速度(motor nerve conduction velocities,MCV)和复合肌肉动作电位(compound muscle action potentials,CMAP)。NEFL突变的CMT1F型患者神经电生理表现符合脱髓鞘性周围神经病的特点,具体表现为正中神经MCV中至重度减慢,振幅下降,感觉神经动作电位(sensory nerve active potential,SNAP)未引出。部分患者视觉诱发反应延长,提示中枢神经系统受累。肌电图证实远端肌肉有严重的去神经支配9

NEFL突变的CMT2E型患者MCV和感觉神经传导速度(sensory nerve conduction velocity,SCV)正常,CMAP波幅降低15。针极肌电图显示弥漫性分布的异常自发活动,表现为正锐波、纤颤电位和复杂重复放电以及巨幅多相运动单位电位16

1.4 病理特点

CMT1F型患者腓肠神经活检示有髓神经纤维密度降低,有髓神经纤维轴索数量减少,中间丝稀疏,髓鞘变薄,NEFL免疫染色缺失9。部分患者可见再生簇和洋葱球形成5

CMT2E型患者腓肠神经活检:光学显微镜下可见大直径有髓神经纤维丢失,再生簇罕见,轴浆均匀,薄髓鞘包裹着肿胀的轴索;电子显微镜下可见原发性轴索病变,表现为局灶性分布的巨大轴索中神经丝排列紊乱,部分轴索萎缩17-18。肌肉病理学检查可见肌纤维肥大/萎缩、群组化现象,以及核内移和结缔组织增生16

1.5 影像学表现

与共济失调相关的NEFL热点突变包括P8R、N98S、C322_N326del和E396K(图1),临床上易被诊断为脊髓小脑性共济失调(spinocerebellar ataxia,SCA)或弗里德赖希共济失调(Friedreich ataxia,FRDA)1017。其中,N98S和E396K突变的CMT患者头颅T1加权磁共振成像(magnetic resonance imaging,MRI)可见小脑萎缩,这可能是NEFL突变的影像学特征之一1019。弥散张量成像(diffusion tensor imaging,DTI)可检测白质微观结构,可见NEFL基因突变的CMT患者小脑白质体积显著减少,主要见于小脑上、中、下脚,小脑灰质未受影响,这可以协助早期筛查伴有小脑功能障碍的CMT患者20

2 CMT2Z型

CMT2Z型是第二常见的轴索型CMT,仅次于线粒体融合蛋白2(mitofusin 2,MFN2)突变所致的CMT2A2型(OMIM#609260)21-22MORC2基因编码一种DNA依赖ATP酶,定位于22q12.2,在2016年首次被确定为CMT的致病基因,其基因型-表型的相关性尚不明确,p.R252W是热点突变2123-24

2.1 发病机制

MORC2在中枢和外周神经的轴突和施万细胞中均有表达24-25。MORC2蛋白是ATP酶家族的成员,由N端GHKL(Gyrase B,Hsp90,histidine kinase and MutL)-ATP酶结构域、三链螺旋卷曲结构域、CW锌指结构域和靠近C端的双链卷曲结构域组成,大多数被发现的MORC2突变定位于GHKL-ATP酶结构域(图226。CMT2Z型发病机制相对更复杂,MORC2在过表达时可作为转录抑制因子,通过与其他基因相互作用导致多种表型的发生,也可通过与人类沉默中心(human silencing hub,HUSH)复合体相互作用,修饰染色质沉默表观遗传,在染色质重构、DNA修复和转录调控中发挥重要作用2326-29。此外,细胞质中的MORC2可能参与脂质代谢和稳态维持30。研究31发现,MORC2可以下调精氨酸激酶结合蛋白2(arginine kinase-binding protein 2,ArgBP2)的表达。ArgBP2是一种肌动蛋白细胞骨架的衔接蛋白,定位于小脑突触后的浦肯野细胞32。在一项体外神经元模型(CMT2Z型患者成纤维细胞和啮齿动物感觉神经元)的研究中,研究者检测到神经递质受体和驱动蛋白基因的异常表达,MORC2突变的致病机制可能涉及编码轴突运输的蛋白质,与NEFL突变引起的CMT2E型类似24

图2

图2   MORC2的结构示意图及突变分布

Note: CC—coiled coil; S5—transducer S5-like domain; CW—zinc finger domain; CD—coil domain.

Fig 2   Structure diagram and mutation distribution of MORC2


2.2 临床表现

MORC2突变的CMT患者常在儿童期或成年早期起病,散发性多见,部分患者呈AD遗传,是典型的长度依赖性多神经病,临床特点是伴有锥体束征的轴索型感觉运动神经病变,表现为下肢远端肌肉无力和感觉丧失21。患者常会出现中枢神经病变,如早发的小脑性共济失调、膈肌麻痹、颅面畸形、认知障碍和脊髓运动神经元变性等2333-34。患者最初症状为下肢抽痛,多数患者下肢远端麻木后出现手部无力,疾病后期累及近端肌肉,感觉减退症状与疾病的严重程度成正比。其他症状有腱反射减弱或消失、肌张力减退、振动觉减退、高弓足畸形、步态异常、共济失调、上肢震颤等,病情较重者可出现脊柱侧凸、小头畸形或面部畸形24-2533-35

2.3 神经电生理表现

MORC2突变的CMT患者神经电生理表现符合轴索型运动和感觉神经病。几乎所有神经的MCV为正常或接近正常,CMAP波幅不对称,且广泛降低。上肢和下肢不同神经的CMAP下降幅度不一,上肢神经受影响较小,正中神经比尺神经受累更早,下降幅度更大,下肢神经受影响较大,腓总神经和胫神经受累较多。SNAP幅度降低或未引出。针极肌电图显示慢性神经源性改变,静息时有明显自发活动,包括纤颤电位、正锐波等2535-36

2.4 病理特点

腓肠神经活检显示,有髓神经纤维明显减少,主要是大直径纤维的缺失,纤维损失分布不均,呈多灶分布,偶见洋葱球和再生簇。髓鞘的形状和致密性未见异常,轴索变性少见。无髓神经纤维形态正常,但数量减少。筋膜内区域纤维化,仅存扁平的施万细胞突起嵌在致密的胶原沉积物中25

2.5 影像学表现

下肢肌肉MRI显示:与大腿肌肉相比,小腿肌肉异常信号明显,提示该肌肉萎缩和脂肪浸润,尤其是比目鱼肌,往往最先受累,胫骨前肌和腓骨肌较少受累;在大腿肌肉中,股四头肌轻至中度受累,内收肌群一般到疾病后期才受累,符合长度依赖性轴索变性假说2535-36。部分患者大脑MRI示轻微脑室周围白质疏松和脑萎缩,可能与认知障碍症状相关2123,小脑可出现进行性萎缩,主要影响蚓部33

3 CMT6B型

CMT6B型是一种常染色体隐性(autosomal recessive,AR)遗传的轴索型感觉运动神经病,由SLC25A46基因纯合或复合杂合突变引起,以早发性视神经萎缩为特征37。部分患者临床上可以出现小脑症状,如共济失调、辨距不良和肌阵挛等38

3.1 发病机制

SLC25A46基因定位于5q22,在2015年首次被确定为CMT6B型的致病基因,在脊髓、胼胝体、穹窿、视交叉、丘脑、下丘脑、中脑、脑桥和小脑中有不同表达38SLC25A46基因编码一种线粒体外膜蛋白,属于线粒体载体蛋白SLC25家族,与内膜重塑蛋白相互作用,与线粒体动力学相关。绝大多数线粒体载体均有3个保守载体区域,而SLC25A46仅有2个(图339。SLC25A46可能通过促进线粒体膜运输,或作为类似于Ugo1(一种参与线粒体融合的酵母蛋白)的分子适配蛋白。SLC25A46基因敲除可导致线粒体肥大,耗氧量降低,影响糖类物质代谢,而SLC25A46过表达会导致线粒体和线粒体网络破坏,提示SLC25A46具有促融合或裂变功能40-42

图3

图3   SLC25A46的结构示意图及突变分布

Note: MC—mitochondrial carrier domain.

Fig 3   Structure diagram and mutation distribution of SLC25A46


3.2 临床表现

SLC25A46突变患者的发病年龄、临床特征和严重程度存在差异,主要表现为与小脑退行性变相关的视神经萎缩和轴索性神经病变4043。患者在婴儿期或儿童期以视力障碍或平衡障碍起病,表现为视神经萎缩和进行性视力丧失,直到成年后才发展为周围神经病变,出现行走困难、远端肌肉萎缩、小脑性共济失调、眼球震颤、跨阈步态、语言困难、高弓足、脊柱侧凸畸形等表现3844。此外,SLC25A46基因突变也可引起1E型脑桥小脑发育不全表型(pontocerebellar hypoplasia type 1E,PCH1E,OMIM#619303),与CMT6B型有重叠的临床特征,且发病时间越早,临床症状越严重45

3.3 神经电生理表现

神经电生理表现为轴索型运动感觉神经病变,具体表现为SNAP未引出,CMAP幅度降低,MCV减慢等,可伴有纤颤电位和高振幅多相运动单元动作电位的募集减少40

3.4 病理特点

腓肠神经活检可见有髓神经洋葱球形成,偶见裸轴索以及轴索变性38

3.5 影像学表现

脑MRI显示弥漫性脑和小脑萎缩(小脑半球和/或小脑蚓部)伴小脑白质异常和基底神经节钙化3843。部分患者除小脑萎缩表现外,还出现小脑T2相高信号和空泡样改变3746

4 CMT2B2型

CMT2B2型是一种AR遗传的缓慢进行性伴有小脑功能障碍的轴索型感觉运动神经病,由PNKP基因纯合或复合杂合突变引起,临床特征包括远端肌肉无力萎缩、远端感觉障碍、共济失调、构音障碍和眼动异常等47

4.1 发病机制

PNKP基因定位于19q13,在2001年首次被确定为CMT2B2型的致病基因48PNKP基因编码一种DNA修复蛋白,具有双重酶学功能,既可催化5′端磷酸化,又具有3′端去磷酸化活性,可作为一种5′-激酶3′-磷酸酶,产生5′-磷酸3′-羟基端。这是DNA修复过程中连接的必要前提,参与多种DNA修复途径,在电离辐射或氧化损伤后的DNA修复中具有重要功能(图449-51,PNKP突变蛋白缺乏C-末端一个重要的功能结构域,氧自由基损伤的DNA不能被有效修复,从而干扰转录,最终导致细胞死亡52

图4

图4   PNKP的结构示意图及突变分布

Note: FHA—forkhead associated domain.

Fig 4   Structure diagram and mutation distribution of PNKP


4.2 临床表现

PNKP突变的CMT2B2型患者常在成年起病,尽管有早发病例报道53,但大多数患者在30~40岁起病,疾病进展缓慢,临床表现为对称性运动和感觉神经病,具体表现为下肢远端肌肉无力和萎缩、深部腱反射减弱或消失、近端肌力保留,主要影响下肢,导致步态异常,部分患者可在疾病后期出现足部畸形,包括高弓足和锤状趾等,一些患者可能在晚年失去独立行走能力47。CMT2B2型患者感觉异常的主诉相对较轻,但在临床检查中可发现明显的感觉障碍,包括感觉性共济失调,振动觉、位置觉下降,仅上肢保留触觉和痛觉,表现为对称性手套(袜套)样感觉障碍48。几乎所有患者均有小脑受累,表现为言语含糊和共济失调步态47。其他特征包括构音障碍、眼动异常、手部畸形(爪形手)等,一般无锥体束征、认知障碍、小头畸形、癫痫等颅神经受累或自主神经系统异常4754。此外,PNKP基因突变也可引起眼动失用-4型(oculomotor apraxia-4,AOA4,OMIM#616267),与CMT2B2型有重叠的临床特征55

4.3 神经电生理表现

CMT2B2型神经电生理学表现与轴索型感觉运动神经病一致。上肢神经的MCV正常或轻微降低,下肢受累神经的MCV减慢、CMAP波幅减少、远端运动潜伏期(distal motor latencies,DML)增加,F波潜伏期相对保留。肌电图显示胫骨前肌群有明显异常,可观察到纤颤电位、多相电位增加、募集活动减少和宽时限、高波幅的运动单元动作电位,提示可能伴有活动性或慢性去神经支配4854

4.4 病理特点

关于CMT2B2型的病理特点,未检索到相关报道。

4.5 影像学表现

PNKP突变的CMT2B2型患者的脑MRI显示不同程度的小脑萎缩,但无白质异常、大脑或脑干萎缩47

5 其他表型

实际上,CMT合并小脑性共济失调的表型远不止上述5种,还包括RNA多聚酶Ⅲ(RNA polymerase Ⅲ,POLR3B)基因突变导致的CMT1I型(OMIM#619742)56,酪氨酰-tRNA合成酶(tyrosyl-tRNA synthetase,YARS1)基因突变导致的CMTDIC型(OMIM#608323)57,复制因子C亚单位1(replication factor C subunit 1,RFC1)基因突变导致的伴周围神经病和前庭反射消失的小脑性共济失调综合征(cerebellar ataxia,neuropathy,and vestibular areflexia syndrome,CANVAS;OMIM#614575)58SACS(sacsin molecular chaperone)基因突变导致的Charlevoix-Saguenay型痉挛性共济失调(OMIM#270550)59,以及SURF1(Surfeit 1)基因突变导致的CMT4K型(OMIM# 616684)60等,均可表现为周围神经病和小脑性共济失调。此外,随着越来越多的CMT致病基因和表型的发现,可能出现其他可合并小脑性共济失调的CMT表型。

6 结语

CMT合并小脑性共济失调具有高度临床异质性和遗传异质性,轴索运输、神经丝稳态和细胞骨架结构的改变是导致CMT的常见机制。随着CMT重叠表型成为研究的热点,人们对CMT致病机制研究更加深入,有望进一步阐明其遗传学特点和临床特征,为CMT合并小脑性共济失调患者诊治提供依据。

作者贡献声明

朱啸巍负责论文的写作和修改,栾兴华负责论文审核并指导论文修改,钟平、曹立参与了论文构思及论文写作指导。所有作者均阅读并同意了最终稿件的提交。

The manuscript was drafted and revised by ZHU Xiaowei. LUAN Xinghua reviewed and guided the revision of the paper. ZHONG Ping and CAO Li participated in the thesis conception and writing guidance. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

LAURÁ M, PIPIS M, ROSSOR A M, et al. Charcot-Marie-Tooth disease and related disorders: an evolving landscape[J]. Curr Opin Neurol, 2019, 32(5): 641-650.

[本文引用: 1]

ROSSOR A M, CARR A S, DEVINE H, et al. Peripheral neuropathy in complex inherited diseases: an approach to diagnosis[J]. J Neurol Neurosurg Psychiatry, 2017, 88(10): 846-863.

[本文引用: 1]

MERSIYANOVA I V, PEREPELOV A V, POLYAKOV A V, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene[J]. Am J Hum Genet, 2000, 67(1): 37-46.

[本文引用: 1]

STONE E J, KOLB S J, BROWN A. A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L[J]. Cytoskeleton (Hoboken), 2021, 78(3): 97-110.

[本文引用: 1]

ABE A, NUMAKURA C, SAITO K, et al. Neurofilament light chain polypeptide gene mutations in Charcot-Marie-Tooth disease: nonsense mutation probably causes a recessive phenotype[J]. J Hum Genet, 2009, 54(2): 94-97.

[本文引用: 3]

ANTUNES L, FRASQUILHO S, OSTASZEWSKI M, et al. Similar α-synuclein staining in the colon mucosa in patients with Parkinson′s disease and controls[J]. Mov Disord, 2016, 31(10): 1567-1570.

[本文引用: 1]

ZHAI J B, LIN H, JULIEN J P, et al. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1[J]. Hum Mol Genet, 2007, 16(24): 3103-3116.

[本文引用: 1]

MARTIN M, IYADURAI S J, GASSMAN A, et al. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport[J]. Mol Biol Cell, 1999, 10(11): 3717-3728.

[本文引用: 1]

YUM S W, ZHANG J X, MO K T, et al. A novel recessive Nefl mutation causes a severe, early-onset axonal neuropathy[J]. Ann Neurol, 2009, 66(6): 759-770.

[本文引用: 3]

LERAT J, MAGDELAINE C, BEAUVAIS-DZUGAN H, et al. A novel pathogenic variant of NEFL responsible for deafness associated with peripheral neuropathy discovered through next-generation sequencing and review of the literature[J]. J Peripher Nerv Syst, 2019, 24(1): 139-144.

[本文引用: 3]

GEORGIOU D M, ZIDAR J, KOROSEC M, et al. A novel NF-L mutation Pro22Ser is associated with CMT2 in a large Slovenian family[J]. Neurogenetics, 2002, 4(2): 93-96.

[本文引用: 1]

FABRIZI G M, CAVALLARO T, ANGIARI C, et al. Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E[J]. Neurology, 2004, 62(8): 1429-1431.

[本文引用: 1]

KIM H J, KIM S B, KIM H S, et al. Phenotypic heterogeneity in patients with NEFL-related Charcot-Marie-Tooth disease[J]. Mol Genet Genomic Med, 2022, 10(2): e1870.

[本文引用: 1]

LIKAR T, HASANHODŽIĆ M, TERAN N, et al. Diagnostic outcomes of exome sequencing in patients with syndromic or non-syndromic hearing loss[J]. PLoS One, 2018, 13(1): e0188578.

[本文引用: 1]

PISCIOTTA C, BAI Y H, BRENNAN K M, et al. Reduced neurofilament expression in cutaneous nerve fibers of patients with CMT2E[J]. Neurology, 2015, 85(3): 228-234.

[本文引用: 1]

AGRAWAL P B, JOSHI M, MARINAKIS N S, et al. Expanding the phenotype associated with the NEFL mutation: neuromuscular disease in a family with overlapping myopathic and neurogenic findings[J]. JAMA Neurol, 2014, 71(11): 1413-1420.

[本文引用: 2]

HORGA A, LAURÀ M, JAUNMUKTANE Z, et al. Genetic and clinical characteristics of NEFL-related Charcot-Marie-Tooth disease[J]. J Neurol Neurosurg Psychiatry, 2017, 88(7): 575-585.

[本文引用: 2]

DOPPLER K, KUNSTMANN E, KRÜGER S, et al. Painful Charcot-Marie-Tooth neuropathy type 2E/1F due to a novel NEFL mutation[J]. Muscle Nerve, 2017, 55(5): 752-755.

[本文引用: 1]

SMITH S M, JENKINSON M, JOHANSEN-BERG H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. NeuroImage, 2006, 31(4): 1487-1505.

[本文引用: 1]

HWANG S, PARK C H, KIM R E, et al. Cerebellar white matter abnormalities in Charcot-Marie-Tooth Disease: a combined volumetry and diffusion tensor imaging analysis[J]. J Clin Med, 2021, 10(21): 4945.

[本文引用: 1]

ANDO M, OKAMOTO Y, YOSHIMURA A, et al. Clinical and mutational spectrum of Charcot-Marie-Tooth disease type 2Z caused by MORC2 variants in Japan[J]. Eur J Neurol, 2017, 24(10): 1274-1282.

[本文引用: 4]

PAREYSON D, SAVERI P, PISCIOTTA C. New developments in Charcot-Marie-Tooth neuropathy and related diseases[J]. Curr Opin Neurol, 2017, 30(5): 471-480.

[本文引用: 1]

GUILLEN SACOTO M J, TCHASOVNIKAROVA I A, TORTI E, et al. De novo variants in the ATPase module of MORC2 cause a neurodevelopmental disorder with growth retardation and variable craniofacial dysmorphism[J]. Am J Hum Genet, 2020, 107(2): 352-363.

[本文引用: 4]

SANCHO P, BARTESAGHI L, MIOSSEC O, et al. Characterization of molecular mechanisms underlying the axonal Charcot-Marie-Tooth neuropathy caused by MORC2 mutations[J]. Hum Mol Genet, 2019, 28(10): 1629-1644.

[本文引用: 4]

SEVILLA T, LUPO V, MARTÍNEZ-RUBIO D, et al. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease[J]. Brain, 2016, 139(Pt 1): 62-72.

[本文引用: 5]

WANG G L, WANG C Y, CAI X Z, et al. Identification and expression analysis of a novel CW-type zinc finger protein MORC2 in cancer cells[J]. Anat Rec (Hoboken), 2010, 293(6): 1002-1009.

[本文引用: 2]

TCHASOVNIKAROVA I A, TIMMS R T, DOUSE C H, et al. Hyperactivation of HUSH complex function by Charcot-Marie-Tooth disease mutation in MORC2[J]. Nat Genet, 2017, 49(7): 1035-1044.

LI D Q, NAIR S S, OHSHIRO K, et al. MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response[J]. Cell Rep, 2012, 2(6): 1657-1669.

DOUSE C H, BLOOR S, LIU Y C, et al. Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms[J]. Nat Commun, 2018, 9(1): 651.

[本文引用: 1]

SÁNCHEZ-SOLANA B, LI D Q, KUMAR R. Cytosolic functions of MORC2 in lipogenesis and adipogenesis[J]. Biochim Biophys Acta, 2014, 1843(2): 316-326.

[本文引用: 1]

SHAO Y G, LI Y, ZHANG J, et al. Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase Ⅸ[J]. Nucleic Acids Res, 2010, 38(9): 2813-2824.

[本文引用: 1]

CESTRA G, TOOMRE D, CHANG S, et al. The Abl/Arg substrate ArgBP2/nArgBP2 coordinates the function of multiple regulatory mechanisms converging on the actin cytoskeleton[J]. Proc Natl Acad Sci U S A, 2005, 102(5): 1731-1736.

[本文引用: 1]

ZANNI G, NARDELLA M, BARRESI S, et al. De novo p.T362R mutation in MORC2 causes early onset cerebellar ataxia, axonal polyneuropathy and nocturnal hypoventilation[J]. Brain, 2017, 140(6): e34.

[本文引用: 3]

SCHOTTMANN G, WAGNER C, SEIFERT F, et al. MORC2 mutation causes severe spinal muscular atrophy-phenotype, cerebellar atrophy, and diaphragmatic paralysis[J]. Brain, 2016, 139(Pt 12): e70.

[本文引用: 1]

HYUN Y S, HONG Y B, CHOI B O, et al. Clinico-genetics in Korean Charcot-Marie-Tooth disease type 2Z with MORC2 mutations[J]. Brain, 2016, 139(Pt 7): e40.

[本文引用: 3]

SIVERA R, LUPO V, FRASQUET M, et al. Charcot-Marie-Tooth disease due to MORC2 mutations in Spain[J]. Eur J Neurol, 2021, 28(9): 3001-3011.

[本文引用: 2]

RAJU S, MEDARAMETLA S, BORAIAH N. Dystonia and hereditary motor sensory neuropathy 6B due to SLC25A46 gene mutations[J]. Mov Disord Clin Pract, 2021, 8(3): 480-482.

[本文引用: 2]

ABRAMS A J, HUFNAGEL R B, REBELO A, et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder[J]. Nat Genet, 2015, 47(8): 926-932.

[本文引用: 5]

PERIVOLIDI V I, VIOLITZI F, IOANNIDOU E, et al. Proteomic identification of the SLC25A46 interactome in transgenic mice expressing SLC25A46-FLAG[J]. J Proteome Res, 2022, 21(2): 375-394.

[本文引用: 1]

WAN J J, STEFFEN J, YOURSHAW M, et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia[J]. Brain, 2016, 139(11): 2877-2890.

[本文引用: 3]

GAO L, WANG M, LIAO L F, et al. A Slc25a46 mouse model simulating age-associated motor deficit, redox imbalance, and mitochondria dysfunction[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(3): 440-447.

LI Z, PENG Y Y, HUFNAGEL R B, et al. Loss of SLC25A46 causes neurodegeneration by affecting mitochondrial dynamics and energy production in mice[J]. Hum Mol Genet, 2017, 26(19): 3776-3791.

[本文引用: 1]

NGUYEN M, BOESTEN I, HELLEBREKERS D M, et al. Novel pathogenic SLC25A46 splice-site mutation causes an optic atrophy spectrum disorder[J]. Clin Genet, 2017, 91(1): 121-125.

[本文引用: 2]

ABRAMS A J, FONTANESI F, TAN N B L, et al. Insights into the genotype-phenotype correlation and molecular function of SLC25A46[J]. Hum Mutat, 2018, 39(12): 1995-2007.

[本文引用: 1]

BRAUNISCH M C, GALLWITZ H, ABICHT A, et al. Extension of the phenotype of biallelic loss-of-function mutations in SLC25A46 to the severe form of pontocerebellar hypoplasia type Ⅰ[J]. Clin Genet, 2018, 93(2): 255-265.

[本文引用: 1]

CHARLESWORTH G, BALINT B, MENCACCI N E, et al. SLC25A46 mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy[J]. Mov Disord, 2016, 31(8): 1249-1251.

[本文引用: 1]

LEAL A, BOGANTES-LEDEZMA S, EKICI A B, et al. The polynucleotide kinase 3′-phosphatase gene (PNKP) is involved in Charcot-Marie-Tooth disease (CMT2B2) previously related to MED25[J]. Neurogenetics, 2018, 19(4): 215-225.

[本文引用: 5]

LEAL A, MORERA B, DEL VALLEG, et al. A second locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 19q13.3[J]. Am J Hum Genet, 2001, 68(1): 269-274.

[本文引用: 3]

JILANI A, RAMOTAR D, SLACK C, et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage[J]. J Biol Chem, 1999, 274(34): 24176-24186.

[本文引用: 1]

BERNSTEIN N K, WILLIAMS R S, RAKOVSZKY M L, et al. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase[J]. Mol Cell, 2005, 17(5): 657-670.

TSUKADA K, MATSUMOTO Y, SHIMADA M. Linker region is required for efficient nuclear localization of polynucleotide kinase phosphatase[J]. PLoS One, 2020, 15(9): e0239404.

[本文引用: 1]

MCKINNON P J. DNA repair deficiency and neurological disease[J]. Nat Rev Neurosci, 2009, 10(2): 100-112.

[本文引用: 1]

PEDROSO J L, ROCHA C R, MACEDO-SOUZA L I, et al. Mutation in PNKP presenting initially as axonal Charcot-Marie-Tooth disease[J]. Neurol Genet, 2015, 1(4): e30.

[本文引用: 1]

BERGHOFF C, BERGHOFF M, LEAL A, et al. Clinical and electrophysiological characteristics of autosomal recessive axonal Charcot-Marie-Tooth disease (ARCMT2B) that maps to chromosome 19q13.3[J]. Neuromuscul Disord, 2004, 14(5): 301-306.

[本文引用: 2]

BRAS J, ALONSO I, BARBOT C, et al. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4[J]. Am J Hum Genet, 2015, 96(3): 474-479.

[本文引用: 1]

DJORDJEVIC D, PINARD M, GAUTHIER M S, et al. De novo variants in POLR3B cause ataxia, spasticity, and demyelinating neuropathy[J]. Am J Hum Genet, 2022, 109(4): 759-763.

[本文引用: 1]

HYUN Y S, PARK H J, HEO S H, et al. Rare variants in methionyl- and tyrosyl-tRNA synthetase genes in late-onset autosomal dominant Charcot-Marie-Tooth neuropathy[J]. Clin Genet, 2014, 86(6): 592-594.

[本文引用: 1]

CORTESE A, SIMONE R, SULLIVAN R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia[J]. Nat Genet, 2019, 51(4): 649-658.

[本文引用: 1]

李资益, 田沃土, 沈隽逸, 等. 非典型Charlevoix-Saguenay常染色体隐性遗传痉挛性共济失调二家系[J]. 中国神经精神疾病杂志, 2021, 47(8): 509-512.

[本文引用: 1]

LI Z Y, TIAN W T, SHEN J Y, et al. Atypical autosomal recessive spastic ataxia of Charlevoix-Saguenay: a report of two families[J]. Chinese Journal of Nervous and Mental Diseases, 2021, 47(8): 509-512.

[本文引用: 1]

ECHANIZ-LAGUNA A, GHEZZI D, CHASSAGNE M, et al. SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease[J]. Neurology, 2013, 81(17): 1523-1530.

[本文引用: 1]

/