上海交通大学学报(医学版), 2023, 43(3): 385-390 doi: 10.3969/j.issn.1674-8115.2023.03.016

综述

非侵入性影像学技术在骨质疏松症中的应用

刘辰骏,, 尹博浩, 孙辉, 张伟,

上海交通大学医学院附属第六人民医院骨科,上海 200233

Application of non-invasive methods of radiology to the osteoporosis

LIU Chenjun,, YIN Bohao, SUN Hui, ZHANG Wei,

Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

通讯作者: 张 伟,电子信箱:orthozhang@sjtu.edu.cn

编委: 徐敏

收稿日期: 2022-08-22   接受日期: 2023-02-17   网络出版日期: 2023-03-28

基金资助: 上海市优秀学术/技术带头人计划.  20XD1402600

Corresponding authors: ZHANG Wei, E-mail:orthozhang@sjtu.edu.cn.

Received: 2022-08-22   Accepted: 2023-02-17   Online: 2023-03-28

作者简介 About authors

刘辰骏(1998—),男,博士生;电子信箱:chenjunliuorth@163.com。 E-mail:chenjunliuorth@163.com

摘要

早期筛查并及时治疗能够有效地降低骨质疏松性骨折的致残率和病死率,高效准确的影像学技术是其关键。相比于骨活检、灌注成像等侵入性手段,非侵入性影像学技术往往在临床活动推广应用中受到的阻力更小。尽管双能X射线吸收法已经被确定为骨质疏松症诊断的最主要方法,但是它的效能受到各种因素影响而相对有限,难以完全反映骨组织的真实状况。近年来影像学技术发展迅速,计算机断层扫描、磁共振成像、定量超声等影像学技术被广泛应用于骨质疏松症的研究和临床应用中,可提供更全面更详尽的骨密度和骨结构信息,为早期筛查诊断、治疗方案设计和疗效预后监测奠定基础。随着医学与计算机科学交织密切,人工智能已经能够协助处理骨质疏松症相关的图像,甚至可以独立进行影像学分析,使得对大样本影像数据库进行疾病筛查成为可能。合理应用上述影像学技术将会极大地减轻骨质疏松症造成的经济和社会负担。该文就非侵入性影像学技术在骨质疏松症方面的技术特点和最新研究进展进行综述。

关键词: 骨质疏松症 ; 骨密度 ; 双能X射线吸收法 ; 计算机断层扫描 ; 磁共振成像

Abstract

Early screening and timely treatment can effectively reduce the morbidity and mortality of the osteoporotic fractures, and hence efficient and accurate non-invasive radiological method is crucial. Non-invasive imaging methods of radiology frequently encounter less resistance in the promotion of therapeutic activities than invasive procedures like bone biopsy and perfusion imaging. Although dual-energy X-ray absorption has been established as the primary diagnostic method for osteoporosis, its efficacy is relatively constrained due to various parameters, and it is challenging to accurately depict the true status of bone structure. In recent years, radiological techniques have developed rapidly. Computed tomography, magnetic resonance imaging, quantitative ultrasound and other imaging techniques have been widely used in the diagnosis of osteoporosis in the research and clinical practices, which provides more comprehensive and detailed information about bone mineral density and bone structure for early diagnosis, treatment design and prognosis monitoring. As clinic and computer science crosstalk closely, it will become possible for artificial intelligence to assist or even independently perform imaging analysis and disease screening in image data base. This article reviews the individual characteristics and latest research progress of the non-invasive radiological techniques for the osteoporosis.

Keywords: osteoporosis ; bone mineral density ; dual energy X-ray absorptiometry ; computed tomography ; magnetic resonance imaging

PDF (1235KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘辰骏, 尹博浩, 孙辉, 张伟. 非侵入性影像学技术在骨质疏松症中的应用. 上海交通大学学报(医学版)[J], 2023, 43(3): 385-390 doi:10.3969/j.issn.1674-8115.2023.03.016

LIU Chenjun, YIN Bohao, SUN Hui, ZHANG Wei. Application of non-invasive methods of radiology to the osteoporosis. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(3): 385-390 doi:10.3969/j.issn.1674-8115.2023.03.016

骨质疏松症(osteoporosis,OP)是以骨量减少和骨结构退变为特征的全身代谢性疾病。随着中国老龄化加剧、OP发病率逐渐增高,如何敏感且高效地筛查和确诊OP成为亟待解决的难题,这不仅影响OP预防开展和治疗策略,还关乎OP及并发症的预测和预后评估。世界卫生组织推荐基于双能X射线吸收法(dual energy X-ray absorptiometry,DXA)测定骨密度(bone mineral density,BMD)。对于低能量或非外伤性骨折,在排除其他相关骨疾病后,即使骨密度不满足测定要求,也应诊断为OP。发生脆性骨折人群中的20%~30%DXA测量的BMD不满足OP的诊断条件仍发生脆性骨折1,由此可见DXA并不是骨强度的综合体现,需要新的技术手段和判断指标补充。侵入性影像学技术如显微计算机断层扫描技术和造影剂灌注成像往往难以被受试者接受2,而且不便应用于大规模筛查和OP长期监控。近年来非侵入性影像学技术的相关研究不断进展,故现对其在OP诊治中的应用研究进展进行综述。

1 影像学技术

1.1 双能X射线吸收法

DXA反映的是骨组织面积骨密度(area bone mineral density,aBMD),严格地说并不是真实的骨密度,易受所测区域骨体积大小影响而产生偏倚3。此外aBMD是感兴趣区所含骨量的综合反映,包含骨皮质和骨松质。测量区域周围的矿物质变化会造成DXA测量误差,如腰椎DXA容易受主动脉等大血管钙化、骨赘生成等造成aBMD增大,无法反映真实情况4

随着DXA分辨率和后处理能力的提升,骨小梁分数(trabecular bone score,TBS)、骨应力指数(bone strain index,BSI)等参数通过分析DXA影像像素灰阶的分布与变化,可补充DXA对于骨小梁结构的评估5-7;3D-DXA技术则根据所得影像运用3D-2D算法等后处理模拟三维结构,得到体积骨密度(volumetric bone mineral density,vBMD)、皮质骨vBMD和皮质骨厚度等参数8。有研究提出3D-DXA还可以测量股骨近端屈曲比、横截面积、截面转动惯量等几何结构参数,以定量计算机断层扫描(quantitative computed tomography,QCT)为标准比较,发现截面结构参数相关系数r=0.86~0.96,且体积结构参数r=0.84~0.97,3D-DXA具有评估股骨骨强度的潜力9。但主要困难是非直接测量带来的偏倚和较长的后处理时间,其次是多样的机器和算法阻碍同类研究间的分析。需要强调的是,TBS、BSI以及3D-DXA并不是骨微结构的直接反映,只是根据DXA影像的分析,有待于更多研究验证。

1.2 X线检查

X线检查在临床上的应用极为广泛,是优秀的影像学数据来源。在缺少DXA设备的社区医疗场景中,研究者注意到X线检查可以承担OP筛查的任务。HE等10在股骨X线平片中测量股骨远端髓腔和皮质厚度,提出股骨远端皮质厚度和皮质指数2个参数,皮质厚度、皮质指数与髋部T值相关性良好(r=0.654,r=0.464)。也有类似影像学参数被提出,主要集中在肱骨近端、股骨近端等干骺端区域,在临床上能简单快速评估骨量情况。但是以上研究多以DXA的结果验证参数可靠性,需要CT等影像学技术进一步确认。若后续研究能在人群中形成危险阈值和共识标准,此类X线参数将极大地帮助OP的筛查和管理。

1.3 计算机断层扫描

计算机断层扫描(computed tomography,CT)的X射线被各种组织吸收后衰减得到对应的CT值。随着OP的进展,骨微结构中脂肪组织占比增加,表现为CT值降低。所以充分利用CT影像资料筛查和诊断OP具有极大的临床意义。LIM等11在股骨近端CT上选取Ward三角区为感兴趣区,测量该区域的CT值,发现CT值<0组与CT值≥130 HU组和股骨T值明显相关(r=0.74,r=-0.57)。LI等12测量椎体L1-L5的CT值,以DXA为标准,首次提出在中国人群中以CT值区分OP(97HU)、骨量减少(135HU)和骨量正常(230HU)。CT不仅可以图像标准化排除体位的干扰,还能自由选取感兴趣区。但是感兴趣区的选取缺乏统一的共识,不同的设备和协议也不可避免导致CT值的偏差。

QCT利用X线被骨组织部分吸收后衰减的原理,以标准体膜或周围肌肉脂肪组织为标准,将影像学数据转换为骨密度值。相比于DXA,QCT的显著优势是三维空间分辨能力,可以测量vBMD。因此分别测量皮质骨和松质骨vBMD成为可能,为OP的细化分析提供新方向。QCT能够纵向评估OP病情的变化以及治疗效果,横向比较皮质骨与松质骨的BMD的变化,指导OP治疗方案的调整。POOLE等13在绝经后妇女OP治疗中发现,罗莫单抗相比于特立帕肽和安慰剂在改善椎体皮质厚度、皮质骨密度等QCT参数更显著,提示罗莫单抗可以强化低骨量患者的椎体骨结构。近年来QCT关于OP的研究方法逐渐精细化。SU等14纳入319例急性髋部骨折女性患者,利用QCT及后处理工具将股骨头分为前下、后下、前上和后上4个象限,发现股骨头后下方体积与年龄显著相关,55岁与95岁人群相差1.2 cm2;相比于股骨头上方,下方vBMD与年龄强烈相关(前下r2=0.23,后下r2=0.22,前上r2=0.095,后上r2=0.094)。骨质量差是骨折内固定失效的重要原因。QCT获取局部BMD信息的特点可以指导骨科手术内固定装置的置入,避开vBMD较低的区域,加强内固定对骨折块的把持力,保证骨折断端的加压。常规CT设备在加入体膜和后处理程序后即可转变为QCT,CT设备的铺开加速了体膜QCT的推广。而且近年来低剂量扫描技术已取得进展,保证效能且降低QCT对人体的电离辐射成为可能。QCT的OP诊断共识指南和数据库的建立15,为其临床应用展开奠定坚实基础。

高分辨率外周定量计算机断层扫描(high-resolution peripheral quantitative computed tomography,HR-pQCT)既延续QCT测量体内vBMD的优点,又以低剂量电离辐射的代价(<3μSv)获取骨皮质和骨松质微结构的图像16。HR-pQCT对骨横截面积、骨皮质厚度、骨皮质孔隙度、骨小梁数目、骨小梁厚度、骨小梁分离度等骨结构参数良好的测量表现,常被应用于大样本、多中心的临床研究。HANSEN等17进行髋部DXA和桡骨胫骨远端HR-pQCT检查,发现尽管年轻男性和女性中总体BMD无显著差异,但男性的桡骨拥有更大皮质骨厚度(10%)、更大的皮质孔隙度(51%)和更高的松质骨BMD(25%),同时年龄与女性的上述参数呈负相关,但是对男性的影响并不明显。BOMIC机构(Bone Microarchitecture International Consortium)汇总来自不同国家8个研究队列7 000余名骨折高风险个体数据进行骨折风险的前瞻性研究,提出HR-pQCT测得的皮质骨和松质骨微结构参数可以不依赖于DXA和FRAX量表进行骨折风险评估18。研究者们认为不同于DXA,HR-pQCT的骨密度、骨结构参数难以用T值进行区分,所以他们尝试建立各个参数与年龄、性别、测量部位的特异性百分位曲线,用于评估骨骼健康状况19-20。HR-pQCT在监控抗骨质疏松治疗、继发性骨质疏松和代谢性疾病评估等方面逐渐受到重视21-22。它最主要的缺点是只能局限于外周骨骼尤其是桡骨和胫骨的测量,这意味着HR-pQCT无法提供椎体或者髋部的直接数据。而且它需要数分钟的扫描时间,期间要求受试者不能移动,否则会出现运动伪影干扰二次处理和临床分析。设备已经有几代更迭和多种型号23,统一标准、规范参考值才能更好地开展临床应用。

双能计算机断层扫描(dual-energy computed tomography,DECT)是基于物体对于不同能量X线吸收能力不同的原理实现成像过程,因此DECT可以根据物体中的成分在特定能量X线下具有不同的吸收系数完成物质分离24。ZHOU等25提出DECT所得钙/脂肪、羟基磷灰石/脂肪等不同基物质密度对,与QCT所得BMD具有一定相关性。已经有研究报道骨髓脂肪组织明显影响BMD,与骨结构和骨骼脆性相关26-27,而DECT的虚拟去钙技术可以经算法分离脂肪,用CT值定量分析脂肪成分。LIU等28纳入55名腰背痛的患者,以QCT测量腰椎BMD为标准分为骨质疏松组和非骨质疏松组,BMD和DECT测量腰椎的钙CT值、混合能量影像CT值、钙密度和脂肪分数均显著相关。DECT还能够减少金属伪影,意味着能够对植入金属内植物的周围骨质进行评估,及时发现相邻的骨质退变以及指导后续的手术治疗。但是DECT-BMD的临床应用有待斟酌,有研究者提出DECT-BMD与DXA-BMD缺乏相关性29-30。DECT的基物质组合反映物质的相对内容和变化趋势,可能需要进一步算法处理才可被视为物质真实含量。

1.4 磁共振成像

磁共振成像(magnetic resonance imaging,MRI)近年来在OP诊断领域受到高度关注。因为它在无电离辐射的情况下不仅有助于诊断隐匿性骨质疏松性骨折,还能定性定量地描述骨和骨髓脂肪的形态结构和病理特性。

具有高代谢活性的骨小梁一直是骨质疏松研究的热点,对骨小梁微结构成像需要克服信噪比的限制和外周组织的干扰,目前文献中主要报道的是1.5T、3T和7T磁场强度。迄今为止大多骨微结构MRI研究是在1.5T和3T场强下进行的,而超高场强7T MRI不仅减小体素规格和缩短扫描时间,还能深入髋部、胫骨近端等解剖位置进行高质量高分辨率成像,近来愈加受到重视。CHANG等31应用7T MRI在脆性骨折组和对照组中,发现尽管髋部和脊柱T值没有明显差异,但是脆性骨折组表现出更低的骨体积分数、骨小梁数量和骨小梁连接密度。对于DXA无法区分和解释的脆性骨折,能够测量骨微结构的MRI将成为有力的补充手段。高分辨率MRI获取更多的影像细节促进有限元分析进展,诸多研究与直接机械测试的骨强度结果具有一致性,可以模拟不同方向和大小的力作用于骨的情景进而细化骨折风险评估,其在复杂结构如髋部中的优势更为明显32-34。超短回波磁共振成像(ultrashort echo time imaging MRI,UTE-MRI)能够采集到短T2组织的信号,结合长T2组织抑制信号等组织抑制技术能够直接对骨皮质成像,不仅可以定性评估骨皮质,还能对骨皮质水含量进行测定。JERBAN等35应用UTE-MRI对135例股骨和胫骨样本分析后提出质子密度信号与孔隙度、孔径正相关(r=0.66,r=0.57),也与BMD有显著关联(r=0.71)。UTE-MRI在骨皮质年龄相关变化中可作为补充内容,为研究骨组织变化提供骨胶原基质这一新方向。骨髓脂肪组织随年龄逐渐增加不断填充在骨髓腔中,与骨健康密切相关。很多研究表明磁共振波谱分析(magnetic resonance spectroscopy,MRS)测得的骨髓脂肪分数与BMD呈负相关36-37。LI等38测量绝经后妇女骨髓样本,发现低BMD组相比于对照组脂肪酸不饱和度和单不饱和度水平显著降低,而饱和度水平明显提升。WOODS等39利用MRS着重分析椎体脆性骨折患者的骨髓脂肪组织饱和度,发现高饱和度提示高脆性骨折风险等不良结局。所以骨髓脂肪组织与BMD不是单纯的对应关系,在未来的实验中区分骨髓脂肪的饱和度是有必要的。GUO等40以QCT测量结果将绝经后女性分为骨质疏松、骨量减少和骨量正常3组,均进行磁敏感定量成像(quantitative susceptibility mapping,QSM)和水脂分离成像,发现椎体QSM与BMD显著负相关(r=-0.70),与质子密度脂肪分数正相关(r=0.64),提出二者结合是可靠的绝经后OP评估工具。弥散加权成像(diffusion weighted imaging,DWI)是基于水分子的扩散运动状态改变成像,MOMENI等41在绝经后妇女中测得DWI的表观扩散系数(apparent diffusion coefficient,ADC)与DXA-BMD呈正相关(r=0.74)。脂肪组织填充破坏的小梁间隙,减少细胞外水分子扩散导致ADC下降,所以ADC具有辅助评估椎体OP的能力。MRI在骨组织和骨微结构的研究中表现优异,但是部分研究结果的绝对值并不一致,可能与设备协议和操作细节有关,同时较长的扫描时间、受限的扫描范围及运动伪影等技术难关还需要克服。

1.5 定量超声

定量超声(quantitative Ultrasound,QUS)依据声波经过骨组织发生速度、能量等特征性改变描述骨的特征,常选择跟骨、桡骨、胫骨、趾骨等作为测量区域。QUS的声速以及幅值衰减等参数能够综合反映骨量和骨强度,可以不依赖于DXA进行骨折风险预测42-43。MCCLOSKEY等44纳入9个QUS大型前瞻性研究发现幅值衰减每下降1个标准差值,骨折风险增加约1.45倍,而声速是1.42倍,提出QUS是一个独立且有效的骨折预测工具。QUS在基层临床医疗上应用广泛的原因包括设备便携、无电离辐射。但是无法单独分析骨量或者骨强度,同时设备型号的繁杂影响多研究比较分析,而且测量既往骨折或畸形部位困难导致其在骨质疏松的应用存在分歧。

2 人工智能与影像学技术

非侵入性影像学技术在OP诊治中的有效应用,要求影像科医师精确、标准地进行图像的获取和敏感、精确地完成图像的识别。人工智能已经能协助选择感兴趣区,辅助医师关注人眼易忽视的细节。LIU等45新开发的无体模自动QCT系统,程序对操作者友好而且能自动选择合适肌肉或脂肪感兴趣区,与DXA和有体模QCT的结果无明显差异。随着深度学习算法的改进,人工智能可以进行处理识别图像的任务。有研究建立深度学习模型依据普通X线鉴别脆性腰椎骨折和非脆性腰椎骨折,识别脆性腰椎骨折特异性为91%(260/285),敏感性为97%(60/62)46。FANG等47基于深卷积神经网络在CT图像中全自动分割椎体,能够区别骨质疏松、骨量减少和骨量正常,而且在不同型号CT中表现稳定。目前人工智能基本可以进行广泛的早期筛查,还能够辅助影像诊断减少漏诊误诊的发生。但是目前人工智能的研究与应用多局限于某个型号甚至某台设备,推广应用有待进一步的突破,且大型追踪性数据库的缺失、数据获取的伦理管控等限制了人工智能在OP诊断上的发展。

3 总结

本文回顾了常见的应用于骨质疏松症的非侵入性影像学方法,即使DXA已经被确定为骨质疏松症诊断的最主要手段,如何科学评估骨骼质量仍充满争议。理想的临床影像学工具应该能够兼顾操作简单和经济实惠,快速完成骨质疏松症的诊断、脆性骨折的预测、治疗预后的评估。显然,上述要求单一方法难以完成,在医疗活动中如何取舍需要进一步探索。值得注意的是,除了骨密度和骨结构影响骨强度,骨髓脂肪对于骨骼健康也极其关键,这将进一步深化对骨质疏松症的认知。随着医学和计算机科学跨学科合作的取长补短及通力协作,医疗将最终涵盖骨质疏松症的全过程,减轻给个人和社会造成的巨大负担。

作者贡献声明

刘辰骏负责论文撰写,张伟、孙辉、尹博浩负责论文修改。所有作者均阅读并同意最终稿件的提交。

The manuscript was drafted by LIU Chenjun and revised by ZHANG Wei, SUN Hui and YIN Bohao. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

WRIGHT N C, SAAG K G, DAWSON-HUGHES B, et al. The impact of the new National Bone Health Alliance (NBHA) diagnostic criteria on the prevalence of osteoporosis in the United States: supplementary presentation[J]. Osteoporos Int, 2017, 28(11): 3283-3284.

[本文引用: 1]

KIMMEL D B, VENNIN S, DESYATOVA A, et al. Bone architecture, bone material properties, and bone turnover in non-osteoporotic post-menopausal women with fragility fracture[J]. Osteoporos Int, 2022, 33(5): 1125-1136.

[本文引用: 1]

ADAMS J E. Advances in bone imaging for osteoporosis[J]. Nat Rev Endocrinol, 2013, 9(1): 28-42.

[本文引用: 1]

PADLINA I, GONZALEZ-RODRIGUEZ E, HANS D, et al. The lumbar spine age-related degenerative disease influences the BMD not the TBS: the Osteolaus cohort[J]. Osteoporos Int, 2017, 28(3): 909-915.

[本文引用: 1]

AMNUAYWATTAKORN S, SRITARA C, UTAMAKUL C, et al. Simulated increased soft tissue thickness artefactually decreases trabecular bone score: a phantom study[J]. BMC Musculoskelet Disord, 2016, 17(1): 17.

[本文引用: 1]

RAJAN R, CHERIAN K E, KAPOOR N, et al. Trabecular bone score-an emerging tool in the management of osteoporosis[J]. Indian J Endocrinol Metab, 2020, 24(3): 237-243.

MESSINA C, RINAUDO L, CESANA B M, et al. Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: a multicenter validation study[J]. Osteoporos Int, 2021, 32(1): 85-91.

[本文引用: 1]

HUMBERT L, MARTELLI Y, FONOLLÀ R, et al. 3D-DXA: assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images[J]. IEEE Trans Med Imaging, 2017, 36(1): 27-39.

[本文引用: 1]

CLOTET J, MARTELLI Y, DI GREGORIO S, et al. Structural parameters of the proximal femur by 3-dimensional dual-energy X-ray absorptiometry software: comparison with quantitative computed tomography[J]. J Clin Densitom, 2018, 21(4): 550-562.

[本文引用: 1]

HE Q F, SUN H, SHU L Y, et al. Radiographic predictors for bone mineral loss: cortical thickness and index of the distal femur[J]. Bone Joint Res, 2018, 7(7): 468-475.

[本文引用: 1]

LIM H K, HA H I, PARK S Y, et al. Comparison of the diagnostic performance of CT Hounsfield unit histogram analysis and dual-energy X-ray absorptiometry in predicting osteoporosis of the femur[J]. Eur Radiol, 2019, 29(4): 1831-1840.

[本文引用: 1]

LI Y L, WONG K H, LAW M W M, et al. Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population[J]. Arch Osteoporos, 2018, 13(1): 76.

[本文引用: 1]

POOLE K E, TREECE G M, PEARSON R A, et al. Romosozumab enhances vertebral bone structure in women with low bone density[J]. J Bone Miner Res, 2022, 37(2): 256-264.

[本文引用: 1]

SU Y B, WANG L, LIU X Y, et al. Lack of periosteal apposition in the head and neck of femur after menopause in Chinese women with high risk for hip fractures—a cross-sectional study with QCT[J]. Bone, 2020, 139: 115545.

[本文引用: 1]

程晓光, 王亮, 曾强, 等. 中国定量CT骨质疏松症诊断指南(2018)[J]. 中华健康管理学杂志, 2019, 5(3): 195-200.

[本文引用: 1]

CHEN X G, WANG L, ZENG Q, et al. Chinese guideline for the diagnosis of osteoporosis with quantitative computed tomography(2018)[J]. Chin J Health Manage, 2019, 5(3): 195-200.

[本文引用: 1]

SCHULTE F A, CHRISTEN P, BADILATTI S D, et al. Virtual supersampling as post-processing step preserves the trabecular bone morphometry in human peripheral quantitative computed tomography scans[J]. PLoS One, 2019, 14(2): e0212280.

[本文引用: 1]

HANSEN S, SHANBHOGUE V, FOLKESTAD L, et al. Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure[J]. Calcif Tissue Int, 2014, 94(3): 269-281.

[本文引用: 1]

SAMELSON E J, BROE K E, XU H F, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study[J]. Lancet Diabetes Endocrinol, 2019, 7(1): 34-43.

[本文引用: 1]

BURT L A, LIANG Z Y, SAJOBI T T, et al. Sex- and site-specific normative data curves for HR-pQCT[J]. J Bone Miner Res, 2016, 31(11): 2041-2047.

[本文引用: 1]

ALVARENGA J C, CAPARBO V F, DOMICIANO D S, et al. Age-related reference data of bone microarchitecture, volumetric bone density, and bone strength parameters in a population of healthy Brazilian men: an HR-pQCT study[J]. Osteoporos Int, 2022, 33(6): 1309-1321.

[本文引用: 1]

RAMCHAND S K, DAVID N L, LEE H, et al. Effects of combination denosumab and high-dose teriparatide administration on bone microarchitecture and estimated strength: the DATA-HD HR-pQCT study[J]. J Bone Miner Res, 2021, 36(1): 41-51.

[本文引用: 1]

NILSSON A G, SUNDH D, JOHANSSON L, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study[J]. J Bone Miner Res, 2017, 32(5): 1062-1071.

[本文引用: 1]

MANSKE S L, DAVISON E M, BURT L A, et al. The estimation of second-generation HR-pQCT from first-generation HR-pQCT using in vivo cross-calibration[J]. J Bone Miner Res, 2017, 32(7): 1514-1524.

[本文引用: 1]

SODICKSON A D, KERALIYA A, CZAKOWSKI B, et al. Dual energy CT in clinical routine: how it works and how it adds value[J]. Emerg Radiol, 2021, 28(1): 103-117.

[本文引用: 1]

ZHOU S W, ZHU L, YOU T, et al. In vivo quantification of bone mineral density of lumbar vertebrae using fast kVp switching dual-energy CT: correlation with quantitative computed tomography[J]. Quant Imaging Med Surg, 2021, 11(1): 341-350.

[本文引用: 1]

SHEN W, SCHERZER R, GANTZ M, et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study[J]. J Clin Endocrinol Metab, 2012, 97(4): 1337-1346.

[本文引用: 1]

LI J, CHEN X, LU L Y, et al. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis[J]. Cytokine Growth Factor Rev, 2020, 52: 88-98.

[本文引用: 1]

LIU Z H, ZHANG Y T, LIU Z, et al. Dual-energy computed tomography virtual noncalcium technique in diagnosing osteoporosis: correlation with quantitative computed tomography[J]. J Comput Assist Tomogr, 2021, 45(3): 452-457.

[本文引用: 1]

WICHMANN J L, BOOZ C, WESARG S, et al. Dual-energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine[J]. Radiology, 2014, 271(3): 778-784.

[本文引用: 1]

BOOZ C, HOFMANN P C, SEDLMAIR M, et al. Evaluation of bone mineral density of the lumbar spine using a novel phantomless dual-energy CT post-processing algorithm in comparison with dual-energy X-ray absorptiometry[J]. Eur Radiol Exp, 2017, 1(1): 11.

[本文引用: 1]

CHANG G, HONIG S, LIU Y X, et al. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density[J]. J Bone Miner Metab, 2015, 33(3): 285-293.

[本文引用: 1]

RAJAPAKSE C S, HOTCA A, NEWMAN B T, et al. Patient-specific hip fracture strength assessment with microstructural MR imaging-based finite element modeling[J]. Radiology, 2017, 283(3): 854-861.

[本文引用: 1]

RAJAPAKSE C S, FARID A R, KARGILIS D C, et al. MRI-based assessment of proximal femur strength compared to mechanical testing[J]. Bone, 2020, 133: 115227.

ZHANG L Y, WANG L, FU R S, et al. In vivo assessment of age- and loading configuration-related changes in multiscale mechanical behavior of the human proximal femur using MRI-based finite element analysis[J]. J Magn Reson Imaging, 2021, 53(3): 905-912.

[本文引用: 1]

JERBAN S, MA Y J, JANG H, et al. Water proton density in human cortical bone obtained from ultrashort echo time (UTE) MRI predicts bone microstructural properties[J]. Magn Reson Imaging, 2020, 67: 85-89.

[本文引用: 1]

BAUM T, YAP S P, KARAMPINOS D C, et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?[J]. J Magn Reson Imaging, 2012, 35(1): 117-124.

[本文引用: 1]

HE J, FANG H, LI X N. Vertebral bone marrow fat content in normal adults with varying bone densities at 3T magnetic resonance imaging[J]. Acta Radiol, 2019, 60(4): 509-515.

[本文引用: 1]

LI X J, SHET K, XU K P, et al. Unsaturation level decreased in bone marrow fat of postmenopausal women with low bone density using high resolution magic angle spinning (HRMAS) 1H NMR spectroscopy[J]. Bone, 2017, 105: 87-92.

[本文引用: 1]

WOODS G N, EWING S K, SCHAFER A L, et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults[J]. J Bone Miner Res, 2022, 37(4): 700-710.

[本文引用: 1]

GUO Y H, CHEN Y J, ZHANG X T, et al. Magnetic susceptibility and fat content in the lumbar spine of postmenopausal women with varying bone mineral density[J]. J Magn Reson Imaging, 2019, 49(4): 1020-1028.

[本文引用: 1]

MOMENI M, ASADZADEH M, MOWLA K, et al. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients[J]. Radiol med, 2020, 125(1): 68-74.

[本文引用: 1]

RAUM K, GRIMAL Q, VARGA P, et al. Ultrasound to assess bone quality[J]. Curr Osteoporos Rep, 2014, 12(2): 154-162.

[本文引用: 1]

MOAYYERI A, ADAMS J E, ADLER R A, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis[J]. Osteoporos Int, 2012, 23(1): 143-153.

[本文引用: 1]

MCCLOSKEY E V, KANIS J A, ODÉN A, et al. Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis[J]. Osteoporos Int, 2015, 26(7): 1979-1987.

[本文引用: 1]

LIU Z J, ZHANG C, MA C, et al. Automatic phantom-less QCT system with high precision of BMD measurement for osteoporosis screening: technique optimisation and clinical validation[J]. J Orthop Transl, 2022, 33: 24-30.

[本文引用: 1]

LI Y C, CHEN H H, LU H H S, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists?[J]. Clin Orthop Relat Res, 2021, 479(7): 1598-1612.

[本文引用: 1]

FANG Y J, LI W, CHEN X J, et al. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks[J]. Eur Radiol, 2021, 31(4): 1831-1842.

[本文引用: 1]

/