强迫症(obsessive-compulsive disorder,OCD)是一种致残率高的常见精神障碍,以反复出现的闯入性想法或重复行为为主要临床特征,其病因与发病机制目前仍未被完全阐明。探索OCD患者大脑形态学特征对于了解OCD的病理机制具有重要的作用。作为一种潜在的生物标志物,大脑形态学特征在辅助临床诊断与治疗上具有良好的应用前景。近年来,重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)和深部脑刺激(deep brain stimulation,DBS)等神经调控技术在治疗OCD中得到了广泛的应用,探索OCD患者大脑形态学特征的异常可为神经调控靶点的选择提供依据。目前关于OCD患者大脑形态学特征的研究主要关注皮质—纹状体—丘脑—皮质(cortico-striato-thalamo-cortical,CSTC)环路,该环路的异常与OCD的病理机制存在密切的关系。受限于不同研究之间入排标准、用药情况和数据分析方法的差异,目前的研究存在很多不一致的结果,如何推进临床上的应用还需要进一步的探索。该文梳理了OCD患者大脑形态学特征的相关研究成果,并讨论了临床上的应用前景,指出了未来的发展方向,以期推动OCD病因学和临床治疗的进展。
关键词:强迫症
;
大脑形态学特征
;
结构性磁共振成像
;
弥散张量成像
Abstract
Obsessive-compulsive disorder (OCD) is a high disabling psychiatric disease with the clinical symptoms of recurrent intrusive thoughts or repetitive behaviors. The etiology and pathogenesis of OCD have not been fully elucidated. Exploring the brain morphological characteristics of OCD is important for understanding the pathological mechanism of OCD. Besides, as potential biomarkers, brain morphological characteristics have a good application prospect in assisting clinical diagnosis and treatment. In recent years, neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS) have been widely used in the treatment of OCD. Exploring the abnormal brain morphological characteristics of OCD may provide a basis for the selection of neuromodulation targets. Current studies on the brain morphological characteristics of OCD mainly focus on the cortico-striato-thalamo-cortical (CSTC) circuit, which is closely related to the pathological mechanism of OCD. Limited by the differences in inclusion and exclusion criteria, medication and data analysis methods among these studies, there are many inconsistent results on the brain morphological characteristics of OCD, and how to promote the clinical application needs further exploration. This article reviews the research results of brain morphological characteristics of OCD, discusses the clinical application prospect, and points out the future development direction, in order to promote the progress of etiology and clinical treatment of OCD.
ZHANG Chen, GUO Qihui, FAN Qing. Research progress in brain morphological characteristics of obsessive-compulsive disorder. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(4): 480-486 doi:10.3969/j.issn.1674-8115.2023.04.011
强迫症(obsessive-compulsive disorder,OCD)是一种病因复杂的严重致残性精神障碍,其主要临床特征为反复出现的闯入性想法或重复行为,在我国的终生患病率为2.4%[1]。目前OCD的发病机制尚不明确,这直接导致了临床上对于OCD的诊断与治疗存在较多的困难。神经影像学对于研究精神疾病具有重要意义,从神经影像学的角度探索OCD的发病机制将有助于加深对于OCD的理解,为进一步开发有效的临床治疗方法提供依据。在神经影像学的研究中,大脑形态学特征是一个重要的研究领域。完整的形态是大脑发挥功能的重要前提。同时,由于大脑的形态学特征具有良好的可靠性与稳定性,一些研究者认为它是精神疾病中一种潜在的生物标志物,可以辅助精神疾病的诊断,在临床上具有广泛的应用前景。近些年来,重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)和深部脑刺激(deep brain stimulation,DBS)等神经调控技术成为了治疗精神疾病的重要手段,探索OCD患者大脑形态学特征的异常,有利于加强对OCD的异常神经机制的了解,这将为神经调控靶点的选择提供依据,提高治疗效果。
目前关于OCD患者的神经影像学研究主要集中在皮质—纹状体—丘脑—皮质(cortico-striato-thalamo-cortical,CSTC)环路,以往大量的神经影像学研究揭示了CSTC环路[2]结构和功能的异常可能是OCD重要的病理生理机制。CSTC环路主要包括了背外侧前额叶、眶额叶、前扣带回等额叶区域以及丘脑和基底神经节,这些脑区可大致分为2条通路:具有兴奋性的直接通路(眶额叶/前扣带回—纹状体—内侧苍白球/黑质—丘脑—眶额叶/前扣带回)和具有抑制性的间接通路(眶额叶/前扣带回—纹状体—外侧苍白球—丘脑底核—内侧苍白球/黑质—丘脑—眶额叶/前扣带回)。直接通路的过度激活和间接通路的激活不足导致了强迫症状的出现[3]。受限于不同研究之间入排标准、用药情况和数据分析方法的差异,目前关于OCD患者大脑形态学特征的研究存在很多不一致的结果。此外,如何利用OCD患者大脑形态学特征辅助临床诊断与治疗的探索尚处于起步阶段,如何将相关的研究成果转换成临床上的应用还需要进一步的探索。本文以Web of Science、PubMed、Scopus、EBSCO、中国知网和万方数据库为主要数据来源,梳理了2012—2022年OCD患者大脑形态学特征的有关研究成果,以期为进一步探究OCD的病理机制及治疗方法提供参考。
目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49]。HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型。结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核。而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因。此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著。此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型。
ZHANG Chen drafted and revised the manuscript. GUO Qihui participated in the reviewing and revising. FAN Qing proposed the idea and guided the writing and revising. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224.
ALEXANDER G E, DELONG M R, STRICK P L. Parallel organization of functionally segregated circuits linking basal Ganglia and cortex[J]. Annu Rev Neurosci, 1986, 9: 357-381.
PAULS D L, ABRAMOVITCH A, RAUCH S L, et al. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective[J]. Nat Rev Neurosci, 2014, 15(6): 410-424.
CHEN J X, TIAN C, ZHANG Q, et al. Changes in volume of subregions within basal ganglia in obsessive-compulsive disorder: a study with atlas-based and VBM methods[J]. Front Neurosci, 2022, 16: 890616.
PENG Z, LUI S S, CHEUNG E F, et al. Brain structural abnormalities in obsessive-compulsive disorder: converging evidence from white matter and grey matter[J]. Asian J Psychiatry, 2012, 5(4): 290-296.
ROTGE J Y, LANGBOUR N, GUEHL D, et al. Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis[J]. Neuropsychopharmacology, 2010, 35(3): 686-691.
ATMACA M, YILDIRIM H, YILMAZ S, et al. Orbito-frontal cortex and thalamus volumes in the patients with obsessive-compulsive disorder before and after cognitive behavioral therapy[J]. Int J Psychiatry Med, 2018, 53(4): 243-255.
KIM T, KWAK S, HUR J W, et al. Neural bases of the clinical and neurocognitive differences between early- and late-onset obsessive-compulsive disorder[J]. J Psychiatry Neurosci, 2020, 45(4): 234-242.
KUBOTA Y, SATO W, KOCHIYAMA T, et al. Corticostriatal-limbic correlates of sub-clinical obsessive-compulsive traits[J]. Psychiatry Res Neuroimaging, 2019, 285: 40-46.
VAN DEN HEUVEL O A, BOEDHOE P S W, BERTOLIN S, et al. An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: the power of worldwide collaboration[J]. Hum Brain Mapp, 2022, 43(1): 23-36.
BOEDHOE P S W, SCHMAAL L, ABE Y, et al. Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis[J]. Am J Psychiatry, 2017, 174(1): 60-69.
KONG X Z, BOEDHOE P S W, ABE Y, et al. Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the ENIGMA consortium[J]. Biol Psychiatry, 2020, 87(12): 1022-1034.
HIBAR D P, CHEUNG J W, MEDLAND S E, et al. Significant concordance of genetic variation that increases both the risk for obsessive-compulsive disorder and the volumes of the nucleus accumbens and putamen[J]. Br J Psychiatry, 2018, 213(1): 430-436.
PANIZZON M S, FENNEMA-NOTESTINE C, EYLER L T, et al. Distinct genetic influences on cortical surface area and cortical thickness[J]. Cereb Cortex, 2009, 19(11): 2728-2735.
WINKLER A M, KOCHUNOV P, BLANGERO J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies[J]. NeuroImage, 2010, 53(3): 1135-1146.
FAN Q, PALANIYAPPAN L, TAN L, et al. Surface anatomical profile of the cerebral cortex in obsessive-compulsive disorder: a study of cortical thickness, folding and surface area[J]. Psychol Med, 2013, 43(5): 1081-1091.
ZHOU C, XU J, PING L L, et al. Cortical thickness and white matter integrity abnormalities in obsessive-compulsive disorder: a combined multimodal surface-based morphometry and tract-based spatial statistics study[J]. Depress Anxiety, 2018, 35(8): 742-751.
FOUCHE J P, DU PLESSIS S, HATTINGH C, et al. Cortical thickness in obsessive-compulsive disorder: multisite mega-analysis of 780 brain scans from six centres[J]. Br J Psychiatry, 2017, 210(1): 67-74.
BOEDHOE P S W, SCHMAAL L, ABE Y, et al. Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: findings from the ENIGMA obsessive-compulsive disorder working group[J]. Am J Psychiatry, 2018, 175(5): 453-462.
ZHANG Z, PING L, ZHAI A, et al. Microstructural white matter abnormalities in obsessive-compulsive disorder: a coordinate-based meta-analysis of diffusion tensor imaging studies[J]. Asian J Psychiatry, 2021, 55: 102467.
PIRAS F, PIRAS F, ABE Y, et al. White matter microstructure and its relation to clinical features of obsessive-compulsive disorder: findings from the ENIGMA OCD Working Group[J]. Transl Psychiatry, 2021, 11(1): 173.
WANG R, FAN Q, ZHANG Z, et al. White matter integrity correlates with choline level in dorsal anterior cingulate cortex of obsessive compulsive disorder patients: a combined DTI-MRS study[J]. Conf Proc IEEE Eng Med Biol Soc, 2017, 3521-3524.
DE SALLES ANDRADE J B, FERREIRA F M, SUO C, et al. An MRI study of the metabolic and structural abnormalities in obsessive-compulsive disorder[J]. Front Hum Neurosci, 2019, 13: 186.
WANG R, FAN Q, ZHANG Z, et al. Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: a combined DTI-MRS study[J]. Psychiatry Res Neuroimaging, 2018, 277: 39-44.
BRUIN W B, TAYLOR L, THOMAS R M, et al. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters[J]. Transl Psychiatry, 2020, 10(1): 342.
BIJANKI K R, PATHAK Y J, NAJERA R A, et al. Defining functional brain networks underlying obsessive-compulsive disorder (OCD) using treatment-induced neuroimaging changes: a systematic review of the literature[J]. J Neurol Neurosurg Psychiatry, 2021, 92(7): 776-786.
ATMACA M, MERMI O, YILDIRIM H, et al. Orbito-frontal cortex and thalamus volumes in obsessive-compulsive disorder before and after pharmacotherapy[J]. Brain Imaging Behav, 2016, 10(3): 669-674.
SZESZKO P R, MACMILLAN S, MCMENIMAN M, et al. Amygdala volume reductions in pediatric patients with obsessive-compulsive disorder treated with paroxetine: preliminary findings[J]. Neuropsychopharmacology, 2004, 29(4): 826-832.
LÁZARO L, BARGALLÓ N, CASTRO-FORNIELES J, et al. Brain changes in children and adolescents with obsessive-compulsive disorder before and after treatment: a voxel-based morphometric MRI study[J]. Psychiatry Res, 2009, 172(2): 140-146.
HOEXTER M Q, DE SOUZA DURAN F L, D'ALCANTE C C, et al. Gray matter volumes in obsessive-compulsive disorder before and after fluoxetine or cognitive-behavior therapy: a randomized clinical trial[J]. Neuropsychopharmacology, 2012, 37(3): 734-745.
YOO S Y, JANG J H, SHIN Y W, et al. White matter abnormalities in drug-naïve patients with obsessive-compulsive disorder: a diffusion tensor study before and after citalopram treatment[J]. Acta Psychiatr Scand, 2007, 116(3): 211-219.
ZHONG Z X, YANG X Y, CAO R X, et al. Abnormalities of white matter microstructure in unmedicated patients with obsessive-compulsive disorder: changes after cognitive behavioral therapy[J]. Brain Behav, 2019, 9(2): e01201.
HUYSER C, VAN DEN HEUVEL O A, WOLTERS L H, et al. Increased orbital frontal gray matter volume after cognitive behavioural therapy in paediatric obsessive compulsive disorder[J]. World J Biol Psychiatry, 2013, 14(4): 319-331.
HU X, LIU Q, LI B, et al. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy[J]. Eur Neuropsychopharmacol, 2016, 26(2): 246-254.
LI F, HUANG X Q, TANG W J, et al. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder[J]. Hum Brain Mapp, 2014, 35(6): 2643-2651.
PARRADO-HERNÁNDEZ E, GÓMEZ-VERDEJO V, MARTÍNEZ-RAMÓN M, et al. Discovering brain regions relevant to obsessive-compulsive disorder identification through bagging and transduction[J]. Med Image Anal, 2014, 18(3): 435-448.
SORIANO-MAS C, PUJOL J, ALONSO P, et al. Identifying patients with obsessive-compulsive disorder using whole-brain anatomy[J]. NeuroImage, 2007, 35(3): 1028-1037.
TRAMBAIOLLI L R, BIAZOLI C E Jr, BALARDIN J B, et al. The relevance of feature selection methods to the classification of obsessive-compulsive disorder based on volumetric measures[J]. J Affect Disord, 2017, 222: 49-56.
ZHOU C, CHENG Y Q, PING L L, et al. Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging[J]. Front Psychiatry, 2018, 9: 524.
HOEXTER M Q, DINIZ J B, LOPES A C, et al. Orbitofrontal thickness as a measure for treatment response prediction in obsessive-compulsive disorder[J]. Depress Anxiety, 2015, 32(12): 900-908.
LIEBRAND L C, ZHUTOVSKY P, TOLMEIJER E K, et al. Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume[J]. Neuroimage Clin, 2021, 30: 102640.
YUN J Y, JANG J H, KIM S N, et al. Neural correlates of response to pharmacotherapy in obsessive-compulsive disorder: individualized cortical morphology-based structural covariance[J]. Prog Neuro Psychopharmacol Biol Psychiatry, 2015, 63: 126-133.
PAGLIACCIO D, CHA J, HE X F, et al. Structural neural markers of response to cognitive behavioral therapy in pediatric obsessive-compulsive disorder[J]. J Child Psychol Psychiatry, 2020, 61(12): 1299-1308.
YANG X Y, LIU R, LUO J, et al. Comprehensive cortical structural features predict the efficacy of cognitive behavioral therapy in obsessive-compulsive disorder[J]. Brain Sci, 2022, 12(7): 921.
RAVINDRAN A, RICHTER M, JAIN T, et al. Functional connectivity in obsessive-compulsive disorder and its subtypes[J]. Psychol Med, 2020, 50(7): 1173-1181.
XIA J, FAN J, LIU W, et al. Functional connectivity within the salience network differentiates autogenous- from reactive-type obsessive-compulsive disorder[J]. Prog Neuro Psychopharmacol Biol Psychiatry, 2020, 98: 109813.
HAN S Q, XU Y H, GUO H R, et al. Two distinct subtypes of obsessive compulsive disorder revealed by heterogeneity through discriminative analysis[J]. Hum Brain Mapp, 2022, 43(10): 3037-3046.
CHAND G B, DWYER D B, ERUS G, et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning[J]. Brain, 2020, 143(3): 1027-1038.
VAROL E, SOTIRAS A, DAVATZIKOS C. HYDRA: revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework[J]. NeuroImage, 2017, 145: 346-364.
HAN S Q, XU Y H, GUO H R, et al. Two distinct subtypes of obsessive compulsive disorder revealed by a framework integrating multimodal neuroimaging information[J]. Hum Brain Mapp, 2022, 43(14): 4254-4265.
... 强迫症(obsessive-compulsive disorder,OCD)是一种病因复杂的严重致残性精神障碍,其主要临床特征为反复出现的闯入性想法或重复行为,在我国的终生患病率为2.4%[1].目前OCD的发病机制尚不明确,这直接导致了临床上对于OCD的诊断与治疗存在较多的困难.神经影像学对于研究精神疾病具有重要意义,从神经影像学的角度探索OCD的发病机制将有助于加深对于OCD的理解,为进一步开发有效的临床治疗方法提供依据.在神经影像学的研究中,大脑形态学特征是一个重要的研究领域.完整的形态是大脑发挥功能的重要前提.同时,由于大脑的形态学特征具有良好的可靠性与稳定性,一些研究者认为它是精神疾病中一种潜在的生物标志物,可以辅助精神疾病的诊断,在临床上具有广泛的应用前景.近些年来,重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)和深部脑刺激(deep brain stimulation,DBS)等神经调控技术成为了治疗精神疾病的重要手段,探索OCD患者大脑形态学特征的异常,有利于加强对OCD的异常神经机制的了解,这将为神经调控靶点的选择提供依据,提高治疗效果. ...
1
... 目前关于OCD患者的神经影像学研究主要集中在皮质—纹状体—丘脑—皮质(cortico-striato-thalamo-cortical,CSTC)环路,以往大量的神经影像学研究揭示了CSTC环路[2]结构和功能的异常可能是OCD重要的病理生理机制.CSTC环路主要包括了背外侧前额叶、眶额叶、前扣带回等额叶区域以及丘脑和基底神经节,这些脑区可大致分为2条通路:具有兴奋性的直接通路(眶额叶/前扣带回—纹状体—内侧苍白球/黑质—丘脑—眶额叶/前扣带回)和具有抑制性的间接通路(眶额叶/前扣带回—纹状体—外侧苍白球—丘脑底核—内侧苍白球/黑质—丘脑—眶额叶/前扣带回).直接通路的过度激活和间接通路的激活不足导致了强迫症状的出现[3].受限于不同研究之间入排标准、用药情况和数据分析方法的差异,目前关于OCD患者大脑形态学特征的研究存在很多不一致的结果.此外,如何利用OCD患者大脑形态学特征辅助临床诊断与治疗的探索尚处于起步阶段,如何将相关的研究成果转换成临床上的应用还需要进一步的探索.本文以Web of Science、PubMed、Scopus、EBSCO、中国知网和万方数据库为主要数据来源,梳理了2012—2022年OCD患者大脑形态学特征的有关研究成果,以期为进一步探究OCD的病理机制及治疗方法提供参考. ...
1
... 目前关于OCD患者的神经影像学研究主要集中在皮质—纹状体—丘脑—皮质(cortico-striato-thalamo-cortical,CSTC)环路,以往大量的神经影像学研究揭示了CSTC环路[2]结构和功能的异常可能是OCD重要的病理生理机制.CSTC环路主要包括了背外侧前额叶、眶额叶、前扣带回等额叶区域以及丘脑和基底神经节,这些脑区可大致分为2条通路:具有兴奋性的直接通路(眶额叶/前扣带回—纹状体—内侧苍白球/黑质—丘脑—眶额叶/前扣带回)和具有抑制性的间接通路(眶额叶/前扣带回—纹状体—外侧苍白球—丘脑底核—内侧苍白球/黑质—丘脑—眶额叶/前扣带回).直接通路的过度激活和间接通路的激活不足导致了强迫症状的出现[3].受限于不同研究之间入排标准、用药情况和数据分析方法的差异,目前关于OCD患者大脑形态学特征的研究存在很多不一致的结果.此外,如何利用OCD患者大脑形态学特征辅助临床诊断与治疗的探索尚处于起步阶段,如何将相关的研究成果转换成临床上的应用还需要进一步的探索.本文以Web of Science、PubMed、Scopus、EBSCO、中国知网和万方数据库为主要数据来源,梳理了2012—2022年OCD患者大脑形态学特征的有关研究成果,以期为进一步探究OCD的病理机制及治疗方法提供参考. ...
... 目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49].HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型.结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核.而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因.此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著.此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型. ...
1
... 目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49].HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型.结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核.而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因.此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著.此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型. ...
1
... 目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49].HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型.结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核.而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因.此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著.此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型. ...
1
... 目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49].HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型.结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核.而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因.此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著.此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型. ...
1
... 目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49].HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型.结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核.而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因.此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著.此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型. ...
1
... 目前OCD不同亚型的区分往往是基于患者所表现出的临床症状,但这种分类方法无法提供病理学上的差别,导致不同的亚型之间大脑的异常存在一定的重叠[48-49].HAN等[50]基于大脑灰质体积,使用HYDRA(Heterogeneity through Discriminative Analysis)[51-52]这种半监督式的机器学习方法将OCD分为不同亚型.结果发现HYDRA成功将OCD分为了2种不同的亚型:亚型1表现出了广泛的大脑体积增大,包括右侧前岛叶、双侧颞中回、双侧海马、双侧海马旁回、楔前叶、额回和小脑;而亚型2则表现出了大脑体积的缩小,包括眶额回、楔前叶、后扣带回和壳核.而将2种亚型的数据合并后,OCD患者与健康对照的大脑体积没有显著差异,这可能是以往关于OCD患者大脑体积的研究出现大量不一致结果的原因.此外,虽然2种亚型在病程与症状严重程度上没有表现出显著差异,但在亚型2中颅内灰质总体积与Y-BOCS得分存在显著负相关,而在亚型1中相关性不显著.此外,HAN等[53]还尝试利用多模态数据,结合大脑灰质体积与低频振荡(amplitude of low-frequency fluctuation,ALFF)将OCD分型,同样可以将OCD区分为2种不同的亚型. ...