上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (4): 480-486.doi: 10.3969/j.issn.1674-8115.2023.04.011
• 综述 • 上一篇
收稿日期:
2022-08-14
接受日期:
2023-03-13
出版日期:
2023-04-23
发布日期:
2023-04-23
通讯作者:
范青
E-mail:zhangchenpsy@163.com;fanqing_98@vip.sina.com
作者简介:
张 晨(2000—),男,硕士生;电子信箱:zhangchenpsy@163.com。
基金资助:
ZHANG Chen(), GUO Qihui, FAN Qing()
Received:
2022-08-14
Accepted:
2023-03-13
Online:
2023-04-23
Published:
2023-04-23
Contact:
FAN Qing
E-mail:zhangchenpsy@163.com;fanqing_98@vip.sina.com
Supported by:
摘要:
强迫症(obsessive-compulsive disorder,OCD)是一种致残率高的常见精神障碍,以反复出现的闯入性想法或重复行为为主要临床特征,其病因与发病机制目前仍未被完全阐明。探索OCD患者大脑形态学特征对于了解OCD的病理机制具有重要的作用。作为一种潜在的生物标志物,大脑形态学特征在辅助临床诊断与治疗上具有良好的应用前景。近年来,重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)和深部脑刺激(deep brain stimulation,DBS)等神经调控技术在治疗OCD中得到了广泛的应用,探索OCD患者大脑形态学特征的异常可为神经调控靶点的选择提供依据。目前关于OCD患者大脑形态学特征的研究主要关注皮质—纹状体—丘脑—皮质(cortico-striato-thalamo-cortical,CSTC)环路,该环路的异常与OCD的病理机制存在密切的关系。受限于不同研究之间入排标准、用药情况和数据分析方法的差异,目前的研究存在很多不一致的结果,如何推进临床上的应用还需要进一步的探索。该文梳理了OCD患者大脑形态学特征的相关研究成果,并讨论了临床上的应用前景,指出了未来的发展方向,以期推动OCD病因学和临床治疗的进展。
中图分类号:
张晨, 郭其辉, 范青. 强迫症患者大脑形态学特征研究进展[J]. 上海交通大学学报(医学版), 2023, 43(4): 480-486.
ZHANG Chen, GUO Qihui, FAN Qing. Research progress in brain morphological characteristics of obsessive-compulsive disorder[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(4): 480-486.
1 | HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. |
2 | ALEXANDER G E, DELONG M R, STRICK P L. Parallel organization of functionally segregated circuits linking basal Ganglia and cortex[J]. Annu Rev Neurosci, 1986, 9: 357-381. |
3 | PAULS D L, ABRAMOVITCH A, RAUCH S L, et al. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective[J]. Nat Rev Neurosci, 2014, 15(6): 410-424. |
4 | CHEN J X, TIAN C, ZHANG Q, et al. Changes in volume of subregions within basal ganglia in obsessive-compulsive disorder: a study with atlas-based and VBM methods[J]. Front Neurosci, 2022, 16: 890616. |
5 | PENG Z, LUI S S, CHEUNG E F, et al. Brain structural abnormalities in obsessive-compulsive disorder: converging evidence from white matter and grey matter[J]. Asian J Psychiatry, 2012, 5(4): 290-296. |
6 | RADUA J, MATAIX-COLS D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder[J]. Br J Psychiatry, 2009, 195(5): 393-402. |
7 | ROTGE J Y, LANGBOUR N, GUEHL D, et al. Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis[J]. Neuropsychopharmacology, 2010, 35(3): 686-691. |
8 | ATMACA M, YILDIRIM H, YILMAZ S, et al. Orbito-frontal cortex and thalamus volumes in the patients with obsessive-compulsive disorder before and after cognitive behavioral therapy[J]. Int J Psychiatry Med, 2018, 53(4): 243-255. |
9 | KIM T, KWAK S, HUR J W, et al. Neural bases of the clinical and neurocognitive differences between early- and late-onset obsessive-compulsive disorder[J]. J Psychiatry Neurosci, 2020, 45(4): 234-242. |
10 | LIU L, LIU J H, YANG L, et al. Accelerated brain aging in patients with obsessive-compulsive disorder[J]. Front Psychiatry, 2022, 13: 852479. |
11 | KUBOTA Y, SATO W, KOCHIYAMA T, et al. Corticostriatal-limbic correlates of sub-clinical obsessive-compulsive traits[J]. Psychiatry Res Neuroimaging, 2019, 285: 40-46. |
12 | VAN DEN HEUVEL O A, BOEDHOE P S W, BERTOLIN S, et al. An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: the power of worldwide collaboration[J]. Hum Brain Mapp, 2022, 43(1): 23-36. |
13 | BOEDHOE P S W, SCHMAAL L, ABE Y, et al. Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis[J]. Am J Psychiatry, 2017, 174(1): 60-69. |
14 | KONG X Z, BOEDHOE P S W, ABE Y, et al. Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the ENIGMA consortium[J]. Biol Psychiatry, 2020, 87(12): 1022-1034. |
15 | HIBAR D P, CHEUNG J W, MEDLAND S E, et al. Significant concordance of genetic variation that increases both the risk for obsessive-compulsive disorder and the volumes of the nucleus accumbens and putamen[J]. Br J Psychiatry, 2018, 213(1): 430-436. |
16 | PANIZZON M S, FENNEMA-NOTESTINE C, EYLER L T, et al. Distinct genetic influences on cortical surface area and cortical thickness[J]. Cereb Cortex, 2009, 19(11): 2728-2735. |
17 | WINKLER A M, KOCHUNOV P, BLANGERO J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies[J]. NeuroImage, 2010, 53(3): 1135-1146. |
18 | FAN Q, PALANIYAPPAN L, TAN L, et al. Surface anatomical profile of the cerebral cortex in obsessive-compulsive disorder: a study of cortical thickness, folding and surface area[J]. Psychol Med, 2013, 43(5): 1081-1091. |
19 | ZHOU C, XU J, PING L L, et al. Cortical thickness and white matter integrity abnormalities in obsessive-compulsive disorder: a combined multimodal surface-based morphometry and tract-based spatial statistics study[J]. Depress Anxiety, 2018, 35(8): 742-751. |
20 | FOUCHE J P, DU PLESSIS S, HATTINGH C, et al. Cortical thickness in obsessive-compulsive disorder: multisite mega-analysis of 780 brain scans from six centres[J]. Br J Psychiatry, 2017, 210(1): 67-74. |
21 | BOEDHOE P S W, SCHMAAL L, ABE Y, et al. Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: findings from the ENIGMA obsessive-compulsive disorder working group[J]. Am J Psychiatry, 2018, 175(5): 453-462. |
22 | ZHANG Z, PING L, ZHAI A, et al. Microstructural white matter abnormalities in obsessive-compulsive disorder: a coordinate-based meta-analysis of diffusion tensor imaging studies[J]. Asian J Psychiatry, 2021, 55: 102467. |
23 | PIRAS F, PIRAS F, ABE Y, et al. White matter microstructure and its relation to clinical features of obsessive-compulsive disorder: findings from the ENIGMA OCD Working Group[J]. Transl Psychiatry, 2021, 11(1): 173. |
24 | WANG R, FAN Q, ZHANG Z, et al. White matter integrity correlates with choline level in dorsal anterior cingulate cortex of obsessive compulsive disorder patients: a combined DTI-MRS study[J]. Conf Proc IEEE Eng Med Biol Soc, 2017, 3521-3524. |
25 | DE SALLES ANDRADE J B, FERREIRA F M, SUO C, et al. An MRI study of the metabolic and structural abnormalities in obsessive-compulsive disorder[J]. Front Hum Neurosci, 2019, 13: 186. |
26 | WANG R, FAN Q, ZHANG Z, et al. Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: a combined DTI-MRS study[J]. Psychiatry Res Neuroimaging, 2018, 277: 39-44. |
27 | BRUIN W B, TAYLOR L, THOMAS R M, et al. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters[J]. Transl Psychiatry, 2020, 10(1): 342. |
28 | BIJANKI K R, PATHAK Y J, NAJERA R A, et al. Defining functional brain networks underlying obsessive-compulsive disorder (OCD) using treatment-induced neuroimaging changes: a systematic review of the literature[J]. J Neurol Neurosurg Psychiatry, 2021, 92(7): 776-786. |
29 | ATMACA M, MERMI O, YILDIRIM H, et al. Orbito-frontal cortex and thalamus volumes in obsessive-compulsive disorder before and after pharmacotherapy[J]. Brain Imaging Behav, 2016, 10(3): 669-674. |
30 | SZESZKO P R, MACMILLAN S, MCMENIMAN M, et al. Amygdala volume reductions in pediatric patients with obsessive-compulsive disorder treated with paroxetine: preliminary findings[J]. Neuropsychopharmacology, 2004, 29(4): 826-832. |
31 | LÁZARO L, BARGALLÓ N, CASTRO-FORNIELES J, et al. Brain changes in children and adolescents with obsessive-compulsive disorder before and after treatment: a voxel-based morphometric MRI study[J]. Psychiatry Res, 2009, 172(2): 140-146. |
32 | HOEXTER M Q, DE SOUZA DURAN F L, D'ALCANTE C C, et al. Gray matter volumes in obsessive-compulsive disorder before and after fluoxetine or cognitive-behavior therapy: a randomized clinical trial[J]. Neuropsychopharmacology, 2012, 37(3): 734-745. |
33 | YOO S Y, JANG J H, SHIN Y W, et al. White matter abnormalities in drug-naïve patients with obsessive-compulsive disorder: a diffusion tensor study before and after citalopram treatment[J]. Acta Psychiatr Scand, 2007, 116(3): 211-219. |
34 | ZHONG Z X, YANG X Y, CAO R X, et al. Abnormalities of white matter microstructure in unmedicated patients with obsessive-compulsive disorder: changes after cognitive behavioral therapy[J]. Brain Behav, 2019, 9(2): e01201. |
35 | HUYSER C, VAN DEN HEUVEL O A, WOLTERS L H, et al. Increased orbital frontal gray matter volume after cognitive behavioural therapy in paediatric obsessive compulsive disorder[J]. World J Biol Psychiatry, 2013, 14(4): 319-331. |
36 | HU X, LIU Q, LI B, et al. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy[J]. Eur Neuropsychopharmacol, 2016, 26(2): 246-254. |
37 | LI F, HUANG X Q, TANG W J, et al. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder[J]. Hum Brain Mapp, 2014, 35(6): 2643-2651. |
38 | PARRADO-HERNÁNDEZ E, GÓMEZ-VERDEJO V, MARTÍNEZ-RAMÓN M, et al. Discovering brain regions relevant to obsessive-compulsive disorder identification through bagging and transduction[J]. Med Image Anal, 2014, 18(3): 435-448. |
39 | SORIANO-MAS C, PUJOL J, ALONSO P, et al. Identifying patients with obsessive-compulsive disorder using whole-brain anatomy[J]. NeuroImage, 2007, 35(3): 1028-1037. |
40 | TRAMBAIOLLI L R, BIAZOLI C E Jr, BALARDIN J B, et al. The relevance of feature selection methods to the classification of obsessive-compulsive disorder based on volumetric measures[J]. J Affect Disord, 2017, 222: 49-56. |
41 | ZHOU C, CHENG Y Q, PING L L, et al. Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging[J]. Front Psychiatry, 2018, 9: 524. |
42 | HIRSCHTRITT M E, BLOCH M H, MATHEWS C A. Obsessive-compulsive disorder: advances in diagnosis and treatment[J]. JAMA, 2017, 317(13): 1358-1367. |
43 | HOEXTER M Q, DINIZ J B, LOPES A C, et al. Orbitofrontal thickness as a measure for treatment response prediction in obsessive-compulsive disorder[J]. Depress Anxiety, 2015, 32(12): 900-908. |
44 | LIEBRAND L C, ZHUTOVSKY P, TOLMEIJER E K, et al. Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume[J]. Neuroimage Clin, 2021, 30: 102640. |
45 | YUN J Y, JANG J H, KIM S N, et al. Neural correlates of response to pharmacotherapy in obsessive-compulsive disorder: individualized cortical morphology-based structural covariance[J]. Prog Neuro Psychopharmacol Biol Psychiatry, 2015, 63: 126-133. |
46 | PAGLIACCIO D, CHA J, HE X F, et al. Structural neural markers of response to cognitive behavioral therapy in pediatric obsessive-compulsive disorder[J]. J Child Psychol Psychiatry, 2020, 61(12): 1299-1308. |
47 | YANG X Y, LIU R, LUO J, et al. Comprehensive cortical structural features predict the efficacy of cognitive behavioral therapy in obsessive-compulsive disorder[J]. Brain Sci, 2022, 12(7): 921. |
48 | RAVINDRAN A, RICHTER M, JAIN T, et al. Functional connectivity in obsessive-compulsive disorder and its subtypes[J]. Psychol Med, 2020, 50(7): 1173-1181. |
49 | XIA J, FAN J, LIU W, et al. Functional connectivity within the salience network differentiates autogenous- from reactive-type obsessive-compulsive disorder[J]. Prog Neuro Psychopharmacol Biol Psychiatry, 2020, 98: 109813. |
50 | HAN S Q, XU Y H, GUO H R, et al. Two distinct subtypes of obsessive compulsive disorder revealed by heterogeneity through discriminative analysis[J]. Hum Brain Mapp, 2022, 43(10): 3037-3046. |
51 | CHAND G B, DWYER D B, ERUS G, et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning[J]. Brain, 2020, 143(3): 1027-1038. |
52 | VAROL E, SOTIRAS A, DAVATZIKOS C. HYDRA: revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework[J]. NeuroImage, 2017, 145: 346-364. |
53 | HAN S Q, XU Y H, GUO H R, et al. Two distinct subtypes of obsessive compulsive disorder revealed by a framework integrating multimodal neuroimaging information[J]. Hum Brain Mapp, 2022, 43(14): 4254-4265. |
[1] | 赵青, 顾文洁, 王振. 强迫症患者的神经质人格和不成熟防御机制在童年创伤与强迫症状中的中介作用[J]. 上海交通大学学报(医学版), 2022, 42(9): 1315-1322. |
[2] | 张瀛丹, 王振. 肠道微生物群在强迫症发病机制及治疗中的作用研究进展[J]. 上海交通大学学报(医学版), 2021, 41(7): 967-971. |
[3] | 李璞玉, 程佳月, 顾秋梦, 阮瀚阳, 王勇, 刘强, 吴艳茹, 王振. 强迫症患者的强迫信念和冲动特质对症状维度的影响[J]. 上海交通大学学报(医学版), 2021, 41(6): 756-760. |
[4] | 林梁俊, 王卫娣, 王佩, 林关宁, 王振. 强迫症的表观遗传学研究进展[J]. 上海交通大学学报(医学版), 2021, 41(2): 267-272. |
[5] | 程佳月,李璞玉,顾秋梦,王 佩,陈 珏,刘 强#,王 振#. 强迫症患者的强迫症状在归因方式与抑郁症状间的中介作用[J]. 上海交通大学学报(医学版), 2020, 40(6): 785-790. |
[6] | 吕 娜,叶惠玲,范 青#,肖泽萍#. 伴囤积症状强迫症患者的临床特征研究[J]. 上海交通大学学报(医学版), 2020, 40(6): 791-797. |
[7] | 程佳月,王振. 经颅直流电刺激治疗强迫症的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(9): 1089-. |
[8] | 任延燕,王振. 强迫症增效治疗机制的研究进展[J]. 上海交通大学学报(医学版), 2019, 39(8): 919-. |
[9] | 周雨鑫 1,高睿 1,王振 2,王纯 3,范青 4. 网络认知行为疗法治疗强迫症的效果与卫生经济学分析[J]. 上海交通大学学报(医学版), 2019, 39(6): 622-. |
[10] | 李璞玉,王 振. 重复经颅磁刺激在强迫症治疗中的应用[J]. 上海交通大学学报(医学版), 2019, 39(12): 1477-. |
[11] | 郭 垒,王钰萍,亢 清,陈 珏. 神经性厌食症脑白质改变的磁共振弥散张量成像研究进展[J]. 上海交通大学学报(医学版), 2019, 39(10): 1209-. |
[12] | 陆璐,张天然,范青#,张海音#. 团体正念认知疗法治疗强迫症中的治疗关系[J]. 上海交通大学学报(医学版), 2018, 38(1): 57-. |
[13] | 王佩,许婷婷,赵青,王振. 基因敲除动物模型在强迫症研究中的应用与进展[J]. 上海交通大学学报(医学版), 2017, 37(9): 1292-. |
[14] | 周月,金海燕,孙伯民,张陈诚,占世坤 . 强迫症决策功能的神经机制和评估#br#[J]. 上海交通大学学报(医学版), 2017, 37(7): 1042-. |
[15] | 许婷婷,王振. 磁共振技术研究小脑在强迫症发病中作用的研究进展[J]. 上海交通大学学报(医学版), 2017, 37(5): 708-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||