1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
EGLOFF-JURAS C, BEZDETNAYA L, DOLIVET G, et al. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green[J]. Int J Nanomedicine, 2019, 14: 7823-7838.
|
3 |
SCHOUW H M, HUISMAN L A, JANSSEN Y F, et al. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4272-4292.
|
4 |
WANG S, REN W X, HOU J T, et al. Fluorescence imaging of pathophysiological microenvironments[J]. Chem Soc Rev, 2021, 50(16): 8887-8902.
|
5 |
ITO R, KAMIYA M, URANO Y. Molecular probes for fluorescence image-guided cancer surgery[J]. Curr Opin Chem Biol, 2022, 67: 102112.
|
6 |
TANG Y F, PEI F, LU X M, et al. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J]. Adv Optical Mater, 2019, 7(21): 1900917.
|
7 |
LI C, GUAN X, ZHANG X, et al. NIR-Ⅱ bioimaging of small molecule fluorophores: from basic research to clinical applications[J]. Biosens Bioelectron, 2022, 216: 114620.
|
8 |
LI S J, CHENG D, HE L W, et al. Recent progresses in NIR-Ⅰ/Ⅱfluorescence imaging for surgical navigation[J]. Front Bioeng Biotechnol, 2021, 9: 768698.
|
9 |
CHEN Q Y, XIE J W, ZHONG Q, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial[J]. JAMA Surg, 2020, 155(4): 300-311.
|
10 |
HE K S, HONG X P, CHI C W, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial[J]. J Am Coll Surg, 2022, 234(2): 130-137.
|
11 |
LI D L, LIU Q, QI Q R, et al. Gold nanoclusters for NIR-Ⅱ fluorescence imaging of bones[J]. Small, 2020, 16(43): e2003851.
|
12 |
LI D F, HE S Q, WU Y F, et al. Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window[J]. Adv Sci (Weinh), 2019, 6(23): 1902042.
|
13 |
ZHOU H, LI S S, ZENG X D, et al. Tumor-homing peptide-based NIR-Ⅱ probes for targeted spontaneous breast tumor imaging[J]. Chin Chem Lett, 2020, 31(6): 1382-1386.
|
14 |
KALYANE D, RAVAL N, MAHESHWARI R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1252-1276.
|
15 |
JOSHI B P, HARDIE J, FARKAS M E. Harnessing biology to deliver therapeutic and imaging entities via cell-based methods[J]. Chemistry, 2018, 24(35): 8717-8726.
|
16 |
ON K C, RHO J, YOON H Y, et al. Tumor-targeting glycol chitosan nanoparticles for image-guided surgery of rabbit orthotopic VX2 lung cancer[J]. Pharmaceutics, 2020, 12(7): 621.
|
17 |
XU Y L, WU H, HUANG J, et al. Probing and enhancing ligand-mediated active targeting of tumors using sub-5 nm ultrafine iron oxide nanoparticles[J]. Theranostics, 2020, 10(6): 2479-2494.
|
18 |
DE JONGH S J, TJALMA J J J, KOLLER M, et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using bevacizumab-800CW in patients with locally advanced rectal cancer[J]. J Nucl Med, 2020, 61(5): 655-661.
|
19 |
VOSKUIL F J, DE JONGH S J, HOOGHIEMSTRA W T R, et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: a quantitative dose-escalation study[J]. Theranostics, 2020, 10(9): 3994-4005.
|
20 |
MUSELAERS C H J, STILLEBROER A B, RIJPKEMA M, et al. Optical imaging of renal cell carcinoma with anti-carbonic anhydrase Ⅸ monoclonal antibody girentuximab[J]. J Nucl Med, 2014, 55(6): 1035-1040.
|
21 |
ZETTLITZ K A, TSAI W T K, KNOWLES S M, et al. Dual-modality immuno-PET and near-infrared fluorescence imaging of pancreatic cancer using an anti-prostate stem cell antigen cys-diabody[J]. J Nucl Med, 2018, 59(9): 1398-1405.
|
22 |
BOOGERD L S F, BOONSTRA M C, PREVOO H A J M, et al. Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: preclinical validation[J]. Surg Oncol, 2019, 28: 1-8.
|
23 |
AMINI A, SAFDARI Y, TASH SHAMSABADI F. Near-infrared fluorescence imaging of EGFR-overexpressing tumors in the mouse xenograft model using scFv-IRDye800CW and cetuximab-IRDye800CW[J]. Mol Imaging, 2022, 2022: 9589820.
|
24 |
DE VALK K S, DEKEN M M, HANDGRAAF H J M, et al. First-in-human assessment of cRGD-ZW800-1, a zwitterionic, integrin-targeted, near-infrared fluorescent peptide in colon carcinoma[J]. Clin Cancer Res, 2020, 26(15): 3990-3998.
|
25 |
MO T, LIU X Y, LUO Y Q, et al. Aptamer-based biosensors and application in tumor theranostics[J]. Cancer Sci, 2022, 113(1): 7-16.
|
26 |
WANG J, FANG X N, ZHANG C C, et al. Development of aptamer-based molecular tools for rapid intraoperative diagnosis and in vivo imaging of serous ovarian cancer[J]. ACS Appl Mater Interfaces, 2021, 13(14): 16118-16126.
|
27 |
ZHU L, ZHONG Y, WU S, et al. Cell membrane camouflaged biomimetic nanoparticles: focusing on tumor theranostics[J]. Mater Today Bio, 2022, 14: 100228.
|
28 |
RAO L, HE Z B, MENG Q F, et al. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles[J]. J Biomed Mater Res A, 2017, 105(2): 521-530.
|
29 |
ZHANG Y, ZHANG G P, ZENG Z L, et al. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy[J]. Chem Soc Rev, 2022, 51(2): 566-593.
|
30 |
BOEDTKJER E, PEDERSEN S F. The acidic tumor microenvironment as a driver of cancer[J]. Annu Rev Physiol, 2020, 82: 103-126.
|
31 |
ZHAO T, HUANG G, LI Y, et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery[J]. Nat Biomed Eng, 2016, 1: 0006.
|
32 |
WITJES M, VOSKUIL F, STEINKAMP P, et al. Fluorescence guided surgery using the pH-activated micellar tracer ONM-100: first-in-human proof of principle in head and neck squamous cell carcinoma[J]. J Oral Maxillofac Surg, 2019, 77(9): e38.
|
33 |
DOU K, HUANG W J, XIANG Y H, et al. Design of activatable NIR-Ⅱ molecular probe for in vivo elucidation of disease-related viscosity variations[J]. Anal Chem, 2020, 92(6): 4177-4181.
|
34 |
UNKART J T, CHEN S L, WAPNIR I L, et al. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study[J]. Ann Surg Oncol, 2017, 24(11): 3167-3173.
|
35 |
SMITH B L, LANAHAN C R, SPECHT M C, et al. Feasibility study of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast cancer in breast conserving surgery[J]. Ann Surg Oncol, 2020, 27(6): 1854-1861.
|
36 |
CAO J, ZHU B L, ZHENG K F, et al. Recent progress in NIR-Ⅱ contrast agent for biological imaging[J]. Front Bioeng Biotechnol, 2020, 7: 487.
|