[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[本文引用: 1]
[2]
THRIFT A P, EL-SERAG H B. Burden of gastric cancer[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 534-542.
[本文引用: 1]
[3]
JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021, 71(3): 264-279.
[本文引用: 1]
[4]
ANSARI S, YAMAOKA Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity[J]. Toxins, 2019, 11(11): 677.
[本文引用: 2]
[5]
YANG Y H, SHU X, XIE C. An overview of autophagy in Helicobacter pylori infection and related gastric cancer[J]. Front Cell Infect Microbiol, 2022, 12: 847716.
[本文引用: 1]
[6]
HOOI J K Y, LAI W Y, NG W K, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis[J]. Gastroenterology, 2017, 153(2): 420-429.
[本文引用: 1]
[7]
WARREN J R, MARSHALL B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis[J]. Lancet, 1983, 1(8336): 1273-1275.
[本文引用: 1]
[8]
MAIXNER F, KRAUSE-KYORA B, TURAEV D, et al. The 5300-year-old Helicobacter pylori genome of the iceman[J]. Science, 2016, 351(6269): 162-165.
[本文引用: 1]
[9]
HUANG Y, WANG Q L, CHENG D D, et al. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori [J]. Front Cell Infect Microbiol, 2016, 6: 159.
[本文引用: 1]
[10]
ILVER D, ARNQVIST A, OGREN J, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging[J]. Science, 1998, 279(5349): 373-377.
[本文引用: 1]
[11]
KÖNIGER V, HOLSTEN L, HARRISON U, et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA[J]. Nat Microbiol, 2016, 2: 16188.
[12]
YAMAOKA Y, KITA M, KODAMA T, et al. Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation[J]. Gastroenterology, 2002, 123(6): 1992-2004.
[13]
MAHDAVI J, SONDÉN B, HURTIG M, et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation[J]. Science, 2002, 297(5581): 573-578.
[本文引用: 1]
[14]
WANG F, MENG W, WANG B, et al. Helicobacter pylori -induced gastric inflammation and gastric cancer[J]. Cancer Lett, 2014, 345(2): 196-202.
[本文引用: 1]
[15]
AMIEVA M, PEEK R M Jr. Pathobiology of Helicobacter pylori -induced gastric cancer[J]. Gastroenterology, 2016, 150(1): 64-78.
[本文引用: 1]
[16]
NEJATI S, KARKHAH A, DARVISH H, et al. Influence of Helicobacter pylori virulence factors CagA and VacA on pathogenesis of gastrointestinal disorders[J]. Microb Pathog, 2018, 117: 43-48.
[本文引用: 1]
[17]
CAPURRO M I, GREENFIELD L K, PRASHAR A, et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1[J]. Nat Microbiol, 2019, 4(8): 1411-1423.
[本文引用: 1]
[18]
CHMIELA M, KARWOWSKA Z, GONCIARZ W, et al. Host pathogen interactions in Helicobacter pylori related gastric cancer[J]. World J Gastroenterol, 2017, 23(9): 1521-1540.
[本文引用: 1]
[19]
TAKAHASHI-KANEMITSU A, KNIGHT C T, HATAKEYAMA M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis[J]. Cell Mol Immunol, 2020, 17(1): 50-63.
[本文引用: 1]
[20]
COVER T L. Helicobacter pylori diversity and gastric cancer risk[J]. mBio, 2016, 7(1): e01869-e01815.
[本文引用: 1]
[21]
NISHIKAWA H, HATAKEYAMA M. Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein[J]. Toxins, 2017, 9(4): 136.
[本文引用: 1]
[22]
HATAKEYAMA M. SagA of CagA in Helicobacter pylori pathogenesis[J]. Curr Opin Microbiol, 2008, 11(1): 30-37.
[本文引用: 1]
[23]
STEIN M, RAPPUOLI R, COVACCI A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation[J]. Proc Natl Acad Sci USA, 2000, 97(3): 1263-1268.
[本文引用: 1]
[24]
MUELLER D, TEGTMEYER N, BRANDT S, et al. C-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains[J]. J Clin Invest, 2012, 122(4): 1553-1566.
[本文引用: 1]
[25]
LIU B, LI X K, SUN F Z, et al. HP-CagA+ regulates the expression of CDK4/CyclinD1 via reg3 to change cell cycle and promote cell proliferation[J]. Int J Mol Sci, 2019, 21(1): 224.
[本文引用: 1]
[26]
SEGAL E D, CHA J, LO J, et al. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori [J]. Proc Natl Acad Sci USA, 1999, 96(25): 14559-14564.
[本文引用: 1]
[27]
BESSÈDE E, STAEDEL C, ACUÑA AMADOR L A, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes[J]. Oncogene, 2014, 33(32): 4123-4131.
[本文引用: 1]
[28]
NAGY T A, FREY M R, YAN F, et al. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling[J]. J Infect Dis, 2009, 199(5): 641-651.
[本文引用: 1]
[29]
HIGASHI H, TSUTSUMI R, MUTO S, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein[J]. Science, 2002, 295(5555): 683-686.
[本文引用: 1]
[30]
TENG Y S, CHEN W Y, YAN Z B, et al. L-plastin promotes gastric cancer growth and metastasis in a Helicobacter pylori cagA -ERK-SP1-dependent manner[J]. Mol Cancer Res, 2021, 19(6): 968-978.
[本文引用: 1]
[31]
YANG F H, XU Y G, LIU C, et al. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression[J]. Cell Death Dis, 2018, 9(1): 12.
[本文引用: 1]
[32]
JIANG X J, WANG J, DENG X Y, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10.
[本文引用: 1]
[33]
DEBERARDINIS R J. Tumor microenvironment, metabolism, and immunotherapy[J]. N Engl J Med, 2020, 382(9): 869-871.
[本文引用: 1]
[34]
ZHAO L, LIU Y Y, ZHANG S M, et al. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer[J]. Cell Death Dis, 2022, 13(4): 378.
[本文引用: 1]
[35]
SUN C, MEZZADRA R, SCHUMACHER T N. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452.
[本文引用: 1]
[36]
DAS S, SUAREZ G, BESWICK E J, et al. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection[J]. J Immunol, 2006, 176(5): 3000-3009.
[本文引用: 1]
[37]
DENG R Y, ZHENG H L, CAI H Z, et al. Effects of Helicobacter pylori on tumor microenvironment and immunotherapy responses[J]. Front Immunol, 2022, 13: 923477.
[本文引用: 1]
[38]
BAJ J, KORONA-GŁOWNIAK I, FORMA A, et al. Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori -induced gastric cancer[J]. Cells, 2020, 9(4): 1055.
[本文引用: 1]
[39]
ZAVROS Y, MERCHANT J L. The immune microenvironment in gastric adenocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 451-467.
[本文引用: 1]
[40]
BAJ J, BRZOZOWSKA K, FORMA A, et al. Immunological aspects of the tumor microenvironment and epithelial-mesenchymal transition in gastric carcinogenesis[J]. Int J Mol Sci, 2020, 21(7): 2544.
[本文引用: 1]
[41]
LEE K, HWANG H, NAM K T. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer[J]. Gut Liver, 2014, 8(2): 131-139.
[本文引用: 1]
[42]
HOLOKAI L, CHAKRABARTI J, BRODA T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection[J]. PLoS Pathog, 2019, 15(1): e1007468.
[本文引用: 1]
1
... 胃癌(gastric cancer,GC)是全球第五大常见癌症,也是癌症第四大死亡原因[1 ] .GC发病率存在一定的地域差异,GC发病总人数的60%以上分布在东亚和东南亚地区,其中东亚地区GC发病率最高[2 ] .幽门螺杆菌(Helicobacter pylori ,HP)感染、年龄较大、过度食用腌制食品、GC家族史、吸烟、胃手术史等是GC发病常见的危险因素[3 ] .HP感染除了影响GC的发生,也可能促进GC的进展转移[4 ] .本文主要从HP关键毒力因子和肿瘤微环境(tumor microenvironment,TME)2个方面对HP促进GC侵袭转移的机制展开论述,旨在为GC的基础研究乃至临床治疗提供新思路. ...
1
... 胃癌(gastric cancer,GC)是全球第五大常见癌症,也是癌症第四大死亡原因[1 ] .GC发病率存在一定的地域差异,GC发病总人数的60%以上分布在东亚和东南亚地区,其中东亚地区GC发病率最高[2 ] .幽门螺杆菌(Helicobacter pylori ,HP)感染、年龄较大、过度食用腌制食品、GC家族史、吸烟、胃手术史等是GC发病常见的危险因素[3 ] .HP感染除了影响GC的发生,也可能促进GC的进展转移[4 ] .本文主要从HP关键毒力因子和肿瘤微环境(tumor microenvironment,TME)2个方面对HP促进GC侵袭转移的机制展开论述,旨在为GC的基础研究乃至临床治疗提供新思路. ...
1
... 胃癌(gastric cancer,GC)是全球第五大常见癌症,也是癌症第四大死亡原因[1 ] .GC发病率存在一定的地域差异,GC发病总人数的60%以上分布在东亚和东南亚地区,其中东亚地区GC发病率最高[2 ] .幽门螺杆菌(Helicobacter pylori ,HP)感染、年龄较大、过度食用腌制食品、GC家族史、吸烟、胃手术史等是GC发病常见的危险因素[3 ] .HP感染除了影响GC的发生,也可能促进GC的进展转移[4 ] .本文主要从HP关键毒力因子和肿瘤微环境(tumor microenvironment,TME)2个方面对HP促进GC侵袭转移的机制展开论述,旨在为GC的基础研究乃至临床治疗提供新思路. ...
2
... 胃癌(gastric cancer,GC)是全球第五大常见癌症,也是癌症第四大死亡原因[1 ] .GC发病率存在一定的地域差异,GC发病总人数的60%以上分布在东亚和东南亚地区,其中东亚地区GC发病率最高[2 ] .幽门螺杆菌(Helicobacter pylori ,HP)感染、年龄较大、过度食用腌制食品、GC家族史、吸烟、胃手术史等是GC发病常见的危险因素[3 ] .HP感染除了影响GC的发生,也可能促进GC的进展转移[4 ] .本文主要从HP关键毒力因子和肿瘤微环境(tumor microenvironment,TME)2个方面对HP促进GC侵袭转移的机制展开论述,旨在为GC的基础研究乃至临床治疗提供新思路. ...
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 全球大约有超过50%以上的人口感染HP[5 ] .它是一种革兰阴性、有鞭毛的螺旋状细菌,由MARSHALL和WARREN发现,可感染胃上皮细胞[6 -7 ] .HP与人类共存寄生的数十万年中[8 ] ,在胃内已经形成了较为成熟的定植机制:首先,HP经黏蛋白黏附于胃上皮黏液层,通过分泌尿素酶催化尿素水解生成氨中和胃酸,形成有利于HP生存的微环境;随之,通过鞭毛运动穿过黏液层到达胃上皮细胞[4 ,9 ] ;最后,HP外膜蛋白(outer membrane proteins,OMPs)中的黏附素成分通过HP自身分泌 BabA、SabA、HopZ、HopQ、OipA等黏附素黏附于宿主胃上皮细胞[10 -13 ] .以上过程使HP得以成功定植于宿主细胞,并且能够抵抗胃内流体动力的物理清除.虽然HP的定植通常不会引起临床表现,但在受感染的个体中,大约10%的患者会发展为消化性溃疡病,1%~3%发展为GC,0.1%发展为黏膜相关淋巴组织(mucosa-associated lymphoid tissue,MALT)淋巴瘤[14 ] .所以HP的定植是其发挥致病力的基础. ...
1
... 目前,对GC的发生发展起作用的HP毒力因子主要包括空泡细胞毒素A(vacuolating cytotoxin A,VacA)、细胞毒素相关抗原A(cytotoxin-associated antigen A,CagA)及其与之相关的Ⅳ型分泌系统(type Ⅳ secretion system,T4SS)[15 ] . ...
1
... 几乎所有HP都存在VacA 基因,并且VacA可能是HP深入定植和易复发感染的原因之一.VacA是一种成孔细胞毒素,由细菌V型自转运分泌系统分泌,并通过内吞作用进入宿主细胞[16 ] .CAPURRO等[17 ] 通过小鼠模型对VacA展开相关研究,发现VacA靶向溶酶体钙离子通道TRPML1来破坏内溶酶体运输,从而篡夺了溶酶体和自噬途径,产生一个保护性的细胞内生态位,使HP逃脱抗生素的作用,最终得以在胃内存活,持续刺激宿主细胞.VacA包含s、i、d、m 4个已识别的可变区,VacA的s1/m1等位基因决定了VacA的高毒性,相比之下,s1/m2和s2/m2基因型没有细胞毒性,s1/m1谱系与肿瘤发生进展以及GC的结局有一定的关联[18 ] . ...
1
... 几乎所有HP都存在VacA 基因,并且VacA可能是HP深入定植和易复发感染的原因之一.VacA是一种成孔细胞毒素,由细菌V型自转运分泌系统分泌,并通过内吞作用进入宿主细胞[16 ] .CAPURRO等[17 ] 通过小鼠模型对VacA展开相关研究,发现VacA靶向溶酶体钙离子通道TRPML1来破坏内溶酶体运输,从而篡夺了溶酶体和自噬途径,产生一个保护性的细胞内生态位,使HP逃脱抗生素的作用,最终得以在胃内存活,持续刺激宿主细胞.VacA包含s、i、d、m 4个已识别的可变区,VacA的s1/m1等位基因决定了VacA的高毒性,相比之下,s1/m2和s2/m2基因型没有细胞毒性,s1/m1谱系与肿瘤发生进展以及GC的结局有一定的关联[18 ] . ...
1
... 几乎所有HP都存在VacA 基因,并且VacA可能是HP深入定植和易复发感染的原因之一.VacA是一种成孔细胞毒素,由细菌V型自转运分泌系统分泌,并通过内吞作用进入宿主细胞[16 ] .CAPURRO等[17 ] 通过小鼠模型对VacA展开相关研究,发现VacA靶向溶酶体钙离子通道TRPML1来破坏内溶酶体运输,从而篡夺了溶酶体和自噬途径,产生一个保护性的细胞内生态位,使HP逃脱抗生素的作用,最终得以在胃内存活,持续刺激宿主细胞.VacA包含s、i、d、m 4个已识别的可变区,VacA的s1/m1等位基因决定了VacA的高毒性,相比之下,s1/m2和s2/m2基因型没有细胞毒性,s1/m1谱系与肿瘤发生进展以及GC的结局有一定的关联[18 ] . ...
1
... CagA阳性菌株的慢性感染被认为是GC发生发展的最强危险因素[19 ] ,相较于VacA,对于GC进展的毒力作用更强.一部分HP菌株含有一个大约40 kb的染色体DNA区域,称为Cag致病岛(cag pathogenicity island,Cag PAI)[20 ] .值得注意的是,几乎所有东亚HP菌株都含Cag致病岛,然而在西方国家,只有约60%菌株含有Cag致病岛[21 ] ,这也许是东亚人群较西方人群GC高发的原因之一.Cag致病岛编码细菌T4SS的主要结构成分以及CagA[22 ] .CagA存在于HP胞质中,最终通过T4SS转运进入宿主细胞[23 ] .CagA到达宿主细胞的胞质溶胶后,其谷氨酸‒脯氨酸‒异亮氨酸‒酪氨酸‒丙氨酸(glutamate-proline-isoleucine-tyrosine-alanine,EPIYA)基序中的酪氨酸就会被宿主的c-SRC和c-ABL激酶磷酸化[24 ] ,随之CagA作为真核生物信号枢纽发挥作用. ...
1
... CagA阳性菌株的慢性感染被认为是GC发生发展的最强危险因素[19 ] ,相较于VacA,对于GC进展的毒力作用更强.一部分HP菌株含有一个大约40 kb的染色体DNA区域,称为Cag致病岛(cag pathogenicity island,Cag PAI)[20 ] .值得注意的是,几乎所有东亚HP菌株都含Cag致病岛,然而在西方国家,只有约60%菌株含有Cag致病岛[21 ] ,这也许是东亚人群较西方人群GC高发的原因之一.Cag致病岛编码细菌T4SS的主要结构成分以及CagA[22 ] .CagA存在于HP胞质中,最终通过T4SS转运进入宿主细胞[23 ] .CagA到达宿主细胞的胞质溶胶后,其谷氨酸‒脯氨酸‒异亮氨酸‒酪氨酸‒丙氨酸(glutamate-proline-isoleucine-tyrosine-alanine,EPIYA)基序中的酪氨酸就会被宿主的c-SRC和c-ABL激酶磷酸化[24 ] ,随之CagA作为真核生物信号枢纽发挥作用. ...
1
... CagA阳性菌株的慢性感染被认为是GC发生发展的最强危险因素[19 ] ,相较于VacA,对于GC进展的毒力作用更强.一部分HP菌株含有一个大约40 kb的染色体DNA区域,称为Cag致病岛(cag pathogenicity island,Cag PAI)[20 ] .值得注意的是,几乎所有东亚HP菌株都含Cag致病岛,然而在西方国家,只有约60%菌株含有Cag致病岛[21 ] ,这也许是东亚人群较西方人群GC高发的原因之一.Cag致病岛编码细菌T4SS的主要结构成分以及CagA[22 ] .CagA存在于HP胞质中,最终通过T4SS转运进入宿主细胞[23 ] .CagA到达宿主细胞的胞质溶胶后,其谷氨酸‒脯氨酸‒异亮氨酸‒酪氨酸‒丙氨酸(glutamate-proline-isoleucine-tyrosine-alanine,EPIYA)基序中的酪氨酸就会被宿主的c-SRC和c-ABL激酶磷酸化[24 ] ,随之CagA作为真核生物信号枢纽发挥作用. ...
1
... CagA阳性菌株的慢性感染被认为是GC发生发展的最强危险因素[19 ] ,相较于VacA,对于GC进展的毒力作用更强.一部分HP菌株含有一个大约40 kb的染色体DNA区域,称为Cag致病岛(cag pathogenicity island,Cag PAI)[20 ] .值得注意的是,几乎所有东亚HP菌株都含Cag致病岛,然而在西方国家,只有约60%菌株含有Cag致病岛[21 ] ,这也许是东亚人群较西方人群GC高发的原因之一.Cag致病岛编码细菌T4SS的主要结构成分以及CagA[22 ] .CagA存在于HP胞质中,最终通过T4SS转运进入宿主细胞[23 ] .CagA到达宿主细胞的胞质溶胶后,其谷氨酸‒脯氨酸‒异亮氨酸‒酪氨酸‒丙氨酸(glutamate-proline-isoleucine-tyrosine-alanine,EPIYA)基序中的酪氨酸就会被宿主的c-SRC和c-ABL激酶磷酸化[24 ] ,随之CagA作为真核生物信号枢纽发挥作用. ...
1
... CagA阳性菌株的慢性感染被认为是GC发生发展的最强危险因素[19 ] ,相较于VacA,对于GC进展的毒力作用更强.一部分HP菌株含有一个大约40 kb的染色体DNA区域,称为Cag致病岛(cag pathogenicity island,Cag PAI)[20 ] .值得注意的是,几乎所有东亚HP菌株都含Cag致病岛,然而在西方国家,只有约60%菌株含有Cag致病岛[21 ] ,这也许是东亚人群较西方人群GC高发的原因之一.Cag致病岛编码细菌T4SS的主要结构成分以及CagA[22 ] .CagA存在于HP胞质中,最终通过T4SS转运进入宿主细胞[23 ] .CagA到达宿主细胞的胞质溶胶后,其谷氨酸‒脯氨酸‒异亮氨酸‒酪氨酸‒丙氨酸(glutamate-proline-isoleucine-tyrosine-alanine,EPIYA)基序中的酪氨酸就会被宿主的c-SRC和c-ABL激酶磷酸化[24 ] ,随之CagA作为真核生物信号枢纽发挥作用. ...
1
... CagA阳性菌株的慢性感染被认为是GC发生发展的最强危险因素[19 ] ,相较于VacA,对于GC进展的毒力作用更强.一部分HP菌株含有一个大约40 kb的染色体DNA区域,称为Cag致病岛(cag pathogenicity island,Cag PAI)[20 ] .值得注意的是,几乎所有东亚HP菌株都含Cag致病岛,然而在西方国家,只有约60%菌株含有Cag致病岛[21 ] ,这也许是东亚人群较西方人群GC高发的原因之一.Cag致病岛编码细菌T4SS的主要结构成分以及CagA[22 ] .CagA存在于HP胞质中,最终通过T4SS转运进入宿主细胞[23 ] .CagA到达宿主细胞的胞质溶胶后,其谷氨酸‒脯氨酸‒异亮氨酸‒酪氨酸‒丙氨酸(glutamate-proline-isoleucine-tyrosine-alanine,EPIYA)基序中的酪氨酸就会被宿主的c-SRC和c-ABL激酶磷酸化[24 ] ,随之CagA作为真核生物信号枢纽发挥作用. ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... CagA有促进GC细胞增殖、上皮‒间质转化(epithelial-mesenchymal transition,EMT)和侵袭转移的能力.有研究提示,CagA阳性的HP通过宿主胃黏膜组织中的再生基因-3(regeneration gene 3,Reg3)调节CDK4/CyclinD1的表达,以改变细胞周期、促进细胞增殖[25 ] .EMT是指细胞极性和连接丧失,逐渐获得间质细胞特性的过程,EMT参与癌症侵袭和转移.CagA可以改变细胞表型,这是胃上皮细胞产生蜂鸟表型所必需的[26 ] .另一项研究[27 ] 也表明,胃上皮细胞感染CagA阳性的HP之后,EMT相关标志物(Snail1、Vimentin和ZEB1等)上调,上皮细胞相关标志物角蛋白-7(cytokeratin 7,CK7)和骨桥蛋白(osteopontin)下调,而且感染导致胃上皮细胞迁移和侵袭的能力增加.除此之外,CagA也可以通过激活多种信号通路作用于胃上皮细胞,比如通过激活磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/PKB)信号,进而抑制胃上皮细胞凋亡并促进其迁移[28 ] ;磷酸化的CagA与含Src同源2结构域蛋白酪氨酸磷酸酶(the SRC homology 2 domain-containing tyrosine phosphatase,SHP-2)的结合可能诱发胃上皮细胞的异常增殖以及促进获得细胞转化的表型[29 ] ;CagA可以激活细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)信号通路,介导转录因子SP1(specificity protein 1,SP1)与L-plastin启动子结合进而增强L-plastin的表达,从而促进GC细胞增殖和转移等[30 ] .CagA阳性的HP也可通过促进微RNA(microRNA,miRNA)表达而实现促癌作用,有研究提示CagA阳性的HP可通过核因子κB(nuclear factor-κB,NF-κB)结合miR-223-3p启动子刺激miR-223-3p的表达,miR-223-3p通过直接靶向ARID1A并降低其表达来促进GC细胞的增殖和迁移[31 ] . ...
1
... 免疫逃逸(immune escape)一直是免疫治疗领域的难题.肿瘤细胞的低免疫原性、肿瘤特异性抗体作为自身抗原的识别、肿瘤表面抗原调节、肿瘤诱导的豁免区域和肿瘤诱导的免疫抑制是肿瘤发生免疫逃逸的诱导因素,其中免疫抑制是迄今为止研究最广泛的机制[32 ] .GC免疫抑制的发生与其所在的TME密不可分.免疫细胞、成纤维细胞、细胞外基质和各种细胞因子等成分,构成了TME的复杂网络[33 ] .作为宿主免疫系统与肿瘤细胞相互作用的一个场所,它的变化影响着肿瘤的发展方向、关系着GC的预后.HP作为经典的胃内生存菌株,也参与了胃肿瘤微环境的调节.当HP长期存在于胃肿瘤细胞时,细胞产生的乳酸、腺苷、一氧化氮等代谢副产物大量堆积,形成一个酸性缺氧的TME,进而抑制被募集进入TME的免疫细胞功能,增加肿瘤转移的可能性[34 ] . ...
1
... 免疫逃逸(immune escape)一直是免疫治疗领域的难题.肿瘤细胞的低免疫原性、肿瘤特异性抗体作为自身抗原的识别、肿瘤表面抗原调节、肿瘤诱导的豁免区域和肿瘤诱导的免疫抑制是肿瘤发生免疫逃逸的诱导因素,其中免疫抑制是迄今为止研究最广泛的机制[32 ] .GC免疫抑制的发生与其所在的TME密不可分.免疫细胞、成纤维细胞、细胞外基质和各种细胞因子等成分,构成了TME的复杂网络[33 ] .作为宿主免疫系统与肿瘤细胞相互作用的一个场所,它的变化影响着肿瘤的发展方向、关系着GC的预后.HP作为经典的胃内生存菌株,也参与了胃肿瘤微环境的调节.当HP长期存在于胃肿瘤细胞时,细胞产生的乳酸、腺苷、一氧化氮等代谢副产物大量堆积,形成一个酸性缺氧的TME,进而抑制被募集进入TME的免疫细胞功能,增加肿瘤转移的可能性[34 ] . ...
1
... 免疫逃逸(immune escape)一直是免疫治疗领域的难题.肿瘤细胞的低免疫原性、肿瘤特异性抗体作为自身抗原的识别、肿瘤表面抗原调节、肿瘤诱导的豁免区域和肿瘤诱导的免疫抑制是肿瘤发生免疫逃逸的诱导因素,其中免疫抑制是迄今为止研究最广泛的机制[32 ] .GC免疫抑制的发生与其所在的TME密不可分.免疫细胞、成纤维细胞、细胞外基质和各种细胞因子等成分,构成了TME的复杂网络[33 ] .作为宿主免疫系统与肿瘤细胞相互作用的一个场所,它的变化影响着肿瘤的发展方向、关系着GC的预后.HP作为经典的胃内生存菌株,也参与了胃肿瘤微环境的调节.当HP长期存在于胃肿瘤细胞时,细胞产生的乳酸、腺苷、一氧化氮等代谢副产物大量堆积,形成一个酸性缺氧的TME,进而抑制被募集进入TME的免疫细胞功能,增加肿瘤转移的可能性[34 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...
1
... 不止于此,HP对于TME中的细胞和免疫检查点的影响也关乎GC患者的病情走向.肿瘤细胞表面程序性死亡配体-1(programmed cell death legand 1,PD-L1)与T细胞的程序性死亡受体-1(programmed cell death protein-1,PD-1)结合后,可抑制T细胞的激活信号、诱导T细胞凋亡,从而削弱宿主抗肿瘤免疫反应,实现免疫逃逸[35 ] .有文章提出,HP与GC细胞PD-L1的表达呈正相关,HP感染可通过激活p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)通路、雷帕霉素复合物1(mechanistic target of rapamycin complex 1,mTORC1)信号通路等途径上调GC细胞PD-L1的表达,抑制T细胞增殖并诱导幼稚T细胞向Treg细胞分化,从而逃避免疫监视、促进免疫逃逸,最终导致病情进展[36 -37 ] .HP感染也可导致成纤维细胞和肌成纤维细胞转化为恶性肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs),CAFs随即释放白细胞介素-6(interleukin-6,IL-6)、环氧合酶-2(COX-2)、趋化因子配体-1[chemokine(C-X-C motif)ligand 1,CXCL1]、CXCL9等物质促进EMT、细胞迁移和侵袭[38 ] .由于树突状细胞(dendritic cells,DCs)和其他免疫细胞表达吲哚胺2, 3-双加氧酶1(indoleamine 2, 3-dioxygenase 1,IDO1),肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)作为一种肿瘤抑制细胞,在HP形成慢性炎症之初就已经存在于胃免疫微环境之中[39 ] .TAMs的高度浸润被证实与GC侵袭迁移有关,TAMs可通过激活β-catenin通路、诱导叉头框蛋白Q1(forkhead box Q1,FOXQ1)表达以及分泌IL-10等方式促进这一作用,同时也通过转化生长因子-β(transforming growth factor-β,TGF-β)致NK细胞功能受损而间接达到目的[40 ] .在实体恶性肿瘤中,TAMs分为M1型和M2型,M2型巨噬细胞的积累通常被认为与肿瘤预后不良有关,而M1型巨噬细胞的浸润可引发针对肿瘤的保护性免疫反应[41 ] .另外,研究还发现,HP依赖于CagA,可通过胃上皮内的sonic hedgehog(Shh)信号通路显著增加类器官中PD-L1的表达[42 ] . ...