1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
THRIFT A P, EL-SERAG H B. Burden of gastric cancer[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 534-542.
|
3 |
JOSHI S S, BADGWELL B D. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021, 71(3): 264-279.
|
4 |
ANSARI S, YAMAOKA Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity[J]. Toxins, 2019, 11(11): 677.
|
5 |
YANG Y H, SHU X, XIE C. An overview of autophagy in Helicobacter pylori infection and related gastric cancer[J]. Front Cell Infect Microbiol, 2022, 12: 847716.
|
6 |
HOOI J K Y, LAI W Y, NG W K, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis[J]. Gastroenterology, 2017, 153(2): 420-429.
|
7 |
WARREN J R, MARSHALL B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis[J]. Lancet, 1983, 1(8336): 1273-1275.
|
8 |
MAIXNER F, KRAUSE-KYORA B, TURAEV D, et al. The 5300-year-old Helicobacter pylori genome of the iceman[J]. Science, 2016, 351(6269): 162-165.
|
9 |
HUANG Y, WANG Q L, CHENG D D, et al. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori[J]. Front Cell Infect Microbiol, 2016, 6: 159.
|
10 |
ILVER D, ARNQVIST A, OGREN J, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging[J]. Science, 1998, 279(5349): 373-377.
|
11 |
KÖNIGER V, HOLSTEN L, HARRISON U, et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA[J]. Nat Microbiol, 2016, 2: 16188.
|
12 |
YAMAOKA Y, KITA M, KODAMA T, et al. Helicobacter pylori infection in mice: role of outer membrane proteins in colonization and inflammation[J]. Gastroenterology, 2002, 123(6): 1992-2004.
|
13 |
MAHDAVI J, SONDÉN B, HURTIG M, et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation[J]. Science, 2002, 297(5581): 573-578.
|
14 |
WANG F, MENG W, WANG B, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer[J]. Cancer Lett, 2014, 345(2): 196-202.
|
15 |
AMIEVA M, PEEK R M Jr. Pathobiology of Helicobacter pylori-induced gastric cancer[J]. Gastroenterology, 2016, 150(1): 64-78.
|
16 |
NEJATI S, KARKHAH A, DARVISH H, et al. Influence of Helicobacter pylori virulence factors CagA and VacA on pathogenesis of gastrointestinal disorders[J]. Microb Pathog, 2018, 117: 43-48.
|
17 |
CAPURRO M I, GREENFIELD L K, PRASHAR A, et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1[J]. Nat Microbiol, 2019, 4(8): 1411-1423.
|
18 |
CHMIELA M, KARWOWSKA Z, GONCIARZ W, et al. Host pathogen interactions in Helicobacter pylori related gastric cancer[J]. World J Gastroenterol, 2017, 23(9): 1521-1540.
|
19 |
TAKAHASHI-KANEMITSU A, KNIGHT C T, HATAKEYAMA M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis[J]. Cell Mol Immunol, 2020, 17(1): 50-63.
|
20 |
COVER T L. Helicobacter pylori diversity and gastric cancer risk[J]. mBio, 2016, 7(1): e01869-e01815.
|
21 |
NISHIKAWA H, HATAKEYAMA M. Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein[J]. Toxins, 2017, 9(4): 136.
|
22 |
HATAKEYAMA M. SagA of CagA in Helicobacter pylori pathogenesis[J]. Curr Opin Microbiol, 2008, 11(1): 30-37.
|
23 |
STEIN M, RAPPUOLI R, COVACCI A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation[J]. Proc Natl Acad Sci USA, 2000, 97(3): 1263-1268.
|
24 |
MUELLER D, TEGTMEYER N, BRANDT S, et al. C-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains[J]. J Clin Invest, 2012, 122(4): 1553-1566.
|
25 |
LIU B, LI X K, SUN F Z, et al. HP-CagA+ regulates the expression of CDK4/CyclinD1 via reg3 to change cell cycle and promote cell proliferation[J]. Int J Mol Sci, 2019, 21(1): 224.
|
26 |
SEGAL E D, CHA J, LO J, et al. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori[J]. Proc Natl Acad Sci USA, 1999, 96(25): 14559-14564.
|
27 |
BESSÈDE E, STAEDEL C, ACUÑA AMADOR L A, et al. Helicobacter pylori generates cells with cancer stem cell properties via epithelial-mesenchymal transition-like changes[J]. Oncogene, 2014, 33(32): 4123-4131.
|
28 |
NAGY T A, FREY M R, YAN F, et al. Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol 3-kinase signaling[J]. J Infect Dis, 2009, 199(5): 641-651.
|
29 |
HIGASHI H, TSUTSUMI R, MUTO S, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein[J]. Science, 2002, 295(5555): 683-686.
|
30 |
TENG Y S, CHEN W Y, YAN Z B, et al. L-plastin promotes gastric cancer growth and metastasis in a Helicobacter pylori cagA-ERK-SP1-dependent manner[J]. Mol Cancer Res, 2021, 19(6): 968-978.
|
31 |
YANG F H, XU Y G, LIU C, et al. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression[J]. Cell Death Dis, 2018, 9(1): 12.
|
32 |
JIANG X J, WANG J, DENG X Y, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10.
|
33 |
DEBERARDINIS R J. Tumor microenvironment, metabolism, and immunotherapy[J]. N Engl J Med, 2020, 382(9): 869-871.
|
34 |
ZHAO L, LIU Y Y, ZHANG S M, et al. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer[J]. Cell Death Dis, 2022, 13(4): 378.
|
35 |
SUN C, MEZZADRA R, SCHUMACHER T N. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452.
|
36 |
DAS S, SUAREZ G, BESWICK E J, et al. Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection[J]. J Immunol, 2006, 176(5): 3000-3009.
|
37 |
DENG R Y, ZHENG H L, CAI H Z, et al. Effects of Helicobacter pylori on tumor microenvironment and immunotherapy responses[J]. Front Immunol, 2022, 13: 923477.
|
38 |
BAJ J, KORONA-GŁOWNIAK I, FORMA A, et al. Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in Helicobacter pylori-induced gastric cancer[J]. Cells, 2020, 9(4): 1055.
|
39 |
ZAVROS Y, MERCHANT J L. The immune microenvironment in gastric adenocarcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(7): 451-467.
|
40 |
BAJ J, BRZOZOWSKA K, FORMA A, et al. Immunological aspects of the tumor microenvironment and epithelial-mesenchymal transition in gastric carcinogenesis[J]. Int J Mol Sci, 2020, 21(7): 2544.
|
41 |
LEE K, HWANG H, NAM K T. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer[J]. Gut Liver, 2014, 8(2): 131-139.
|
42 |
HOLOKAI L, CHAKRABARTI J, BRODA T, et al. Increased programmed death-ligand 1 is an early epithelial cell response to Helicobacter pylori infection[J]. PLoS Pathog, 2019, 15(1): e1007468.
|