Osteosarcoma (OS) is a common primary malignant bone tumor in children and adolescents. The high recurrence and metastasis rate have become a common clinical problem to be solved, but there is no effective treatment. In recent years, studies have suggested that targeting the tumor microenvironment will likely become a new treatment direction for OS. Immune cell infiltration in the tumor microenvironment can promote tumor inflammation and angiogenesis. Tumor-associated macrophages (TAMs) are the most important immune cells in the tumor microenvironment, which play important roles in the development and metastasis of OS. The article reviews the effect of TAMs polarization on tumor cells and describes the effect of TAMs on the occurrence and development of OS from five aspects, including TAMs affecting the growth, invasion and metastasis, mediating chemotherapy resistance, stem cell-like phenotype, and immunosuppression of OS. The review summarizes the research progress of targeting TAMs in the treatment of OS in the past years, including influencing the recruitment of TAMs, promoting the polarization of M2 type to M1 type, targeting CD47 to promote the phagocytosis of TAMs, and targeting the immune checkpoint of TAMs, aiming to provide new directions and ideas for targeted therapy of OS.
WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(5): 624-630 doi:10.3969/j.issn.1674-8115.2023.05.014
OS的生长在TAMs作用下可受多种信号转导通路调控。其中Notch信号通路广泛参与调节组织、器官和细胞的发育和分化,其被阻断后可以促进TAMs 向M2表型的极化,促进肿瘤细胞生长和免疫逃逸[20]。M1型TAMs在与OS细胞共培养条件下,也可通过释放人70kDa热休克蛋白1样蛋白(heat shock protein family A member 1 like,HSPA1L)诱导细胞凋亡,从而达到抑制肿瘤细胞生长的目的[21]。
OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31]。M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32]。研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33]。外泌体与M2型TAMs诱导的OS转移关系密切。OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34]。此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35]。CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移。OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37]。因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移。
当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs[50]。参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用。ZHAO等[51]研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明。因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略[51-52]。而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用[53]。
WANG Mengyue and HAN Yonglong participated in the topic selection design. CHEN Junjun and YANG Quanjun participated in the writing guidance. WEI Lanyi and XUE Xiaochuan participated in the writing and revision of the paper. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
HUANG Q, LIANG X, REN T, et al. The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications[J]. Cell Oncol (Dordr), 2021, 44(3): 525-539.
CHONG Z X, YEAP S K, HO W Y. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma[J]. Pharmacol Res, 2021, 172: 105818.
ZHU T, HAN J, YANG L, et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications[J]. Front Immunol, 2022, 13: 907550.
ZHE S L, SONG X H, ZHOU Y, et al. Effects of osteosarcoma cell exosomes on the transformation of fibroblasts into tumor-associated fibroblasts by regulating JAK2/STAT3 signaling pathway [J]. Western Medicine, 2021, 33(8): 1096-1100, 1105.
LIU H T, ZHAO L H, QIN H M. Study on the function and mechanism of bone marrow mesenchymal stem cell exosomal miR-25-3p regulating the proliferation, migration and invasion of osteosarcoma cells [J]. Hebei Medicine, 2022, 28(4): 529-534.
WEI C, YANG C, WANG S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64.
ANDERSON P M, MEYERS P, KLEINERMAN E, et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments[J]. Pediatr Blood Cancer, 2014, 61(2): 238-244.
HEYMANN M F, LÉZOT F, HEYMANN D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[J]. Cell Immunol, 2019, 343: 103711.
LIU Y Y, WEN J S, XING J J, et al. Research status and prospect of immunotherapy for primary malignant bone tumors [J]. Chemistry of Life, 2022, 42(2): 283-290.
NIU J, YAN T, GUO W, et al. Identification of potential therapeutic targets and immune cell infiltration characteristics in osteosarcoma using bioinformatics strategy[J]. Front Oncol, 2020, 10: 1628.
QIU S Q, WAAIJER S J H, ZWAGER M C, et al. Tumor-associated macrophages in breast cancer: innocent bystander or important player?[J]. Cancer Treat Rev, 2018, 70: 178-189.
LIU Y, FENG W, DAI Y, et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma[J]. Front Oncol, 2021, 11: 709210.
REN S, ZHANG X, HU Y, et al. Blocking the Notch signal transduction pathway promotes tumor growth in osteosarcoma by affecting polarization of TAM to M2 phenotype[J]. Ann Transl Med, 2020, 8(17): 1057.
LI J, ZHAO C, LI Y, et al. Osteosarcoma exocytosis of soluble LGALS3BP mediates macrophages toward a tumoricidal phenotype[J]. Cancer Lett, 2022, 528: 1-15.
HE F, DING G, JIANG W, et al. Effect of tumor-associated macrophages on lncRNA PURPL/miR-363/PDZD2 axis in osteosarcoma cells[J]. Cell Death Discov, 2021, 7(1): 307.
CUI J J, WANG Y, XUE H W. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis[J]. Bioengineered, 2022, 13(4): 8370-8381.
YANG D, LIU K, FAN L, et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-like polarization of tumor-associated macrophages of CPEB4[J]. Cancer Lett, 2020, 473: 33-49.
ZHANG H, YU Y, WANG J, et al. Macrophages-derived exosomal lncRNA LIFR-AS1 promotes osteosarcoma cell progression via miR-29a/NFIA axis[J]. Cancer Cell Int, 2021, 21(1): 192.
ZHONG L, LIAO D, LI J, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes[J]. Signal Transduct Target Ther, 2021, 6(1): 59.
HUO Y, LI Q, WANG X, et al. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2[J]. Oncotarget, 2017, 8(29): 46993-47006.
WANG W, SHEN H, CAO G, et al. Long non-coding RNA XIST predicts poor prognosis and promotes malignant phenotypes in osteosarcoma[J]. Oncol Lett, 2019, 17(1): 256-262.
WANG X, ZOU J, CHEN H, et al. Long noncoding RNA NORAD regulates cancer cell proliferation and migration in human osteosarcoma by endogenously competing with miR-199a-3p[J]. IUBMB Life, 2019, 71(10): 1482-1491.
ZHANG B, ZHANG Y, LI R, et al. The efficacy and safety comparison of first-line chemotherapeutic agents (high-dose methotrexate, doxorubicin, cisplatin, and ifosfamide) for osteosarcoma: a network meta-analysis[J]. J Orthop Surg Res, 2020, 15(1): 51.
HAN Y, GUO W, REN T, et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis[J]. Cancer Lett, 2019, 440/441: 116-125.
SU Y, ZHOU Y, SUN Y J, et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1[J]. J Mol Med (Berl), 2019, 97(1): 49-61.
CHENG Z, WANG L, WU C, et al. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through tim-3[J]. Arch Med Res, 2021, 52(2): 200-210.
QUERO L, TIADEN A N, HANSER E, et al. miR-221-3p drives the shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation [J]. Front Immunol, 2019, 10: 3087.
CAO H, QUAN S, ZHANG L, et al. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma[J]. Oncol Lett, 2021, 21(5): 391.
SONG Y J, XU Y, ZHU X, et al. Immune landscape of the tumor microenvironment identifies prognostic gene signature CD4/CD68/CSF1R in osteosarcoma[J]. Front Oncol, 2020, 10: 1198.
LIANG X, GUO W, REN T, et al. Macrophages reduce the sensitivity of osteosarcoma to neoadjuvant chemotherapy drugs by secreting Interleukin-1 beta[J]. Cancer Lett, 2020, 480: 4-14.
LUO Z W, LIU P P, WANG Z X, et al. Macrophages in osteosarcoma immune microenvironment: implications for immunotherapy[J]. Front Oncol, 2020, 10: 586580.
ZHENG P, CHEN L, YUAN X, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 53.
DONG X, SUN R, WANG J, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer[J]. Biochem Pharmacol, 2020, 182: 114289.
YANG L, DONG Y, LI Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145(4): 1099-1110.
SHAO X J, XIANG S F, CHEN Y Q, et al. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells[J]. Acta Pharmacol Sin, 2019, 40(10): 1343-1350.
WU J J, SUN W Y, WEI W. Research progress on the role of tumor-associated macrophages in liver cancer and targeted therapy [J]. Journal of Anhui Medical University, 2017, 52(12): 1901-1905.
MYERS K V, AMEND S R, PIENTA K J. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 94.
GAO S, XU P J, HAO J H. Research progress of macrophages in tumor development and treatment [J]. Chinese Journal of Cell Biology, 2022, 44(4): 572-582.
ZHAO S J, JIANG Y Q, XU N W, et al. SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex[J]. Oncogene, 2018, 37(8): 1049-1061.
RIBEIRO N, SOUSA S R, BREKKEN R A, et al. Role of SPARC in bone remodeling and cancer-related bone metastasis [J]. J Cell Biochem, 2014, 115(1): 17-26.
SÉGALINY A I, MOHAMADI A, DIZIER B, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J]. Int J Cancer, 2015, 137(1): 73-85.
YIN F F, XU L J, HE M J, et al. Methotrexate induces M1 polarization of macrophages and promotes apoptosis of osteosarcoma cells [J]. Advances in Modern Biomedicine, 2020, 20(11): 2006-2011.
GOWD V, AHMAD A, TARIQUE M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine[J]. Semin Cancer Biol, 2022, 86(pt 2): 624-644.
ZHANG Y, YUAN T, LI Z, et al. Hyaluronate-based self-stabilized nanoparticles for immunosuppression reversion and immunochemotherapy in osteosarcoma treatment[J]. ACS Biomater Sci Eng, 2021, 7(4): 1515-1525.
MOHANTY S, YERNENI K, THERUVATH J L, et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 MAb immunotherapy in osteosarcoma[J]. Cell Death Dis, 2019, 10(2): 36.
XU J F, PAN X H, ZHANG S J, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models[J]. Oncotarget, 2015, 6(27): 23662-23670.
MOHANTY S, AGHIGHI M, YERNENI K, et al. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don′t eat me’ signals off and ‘eat me’ signals on[J]. Mol Oncol, 2019, 13(10): 2049-2061.
WANG C L, NIE Y J, PAN R S, et al. Research progress of three emerging immune checkpoint molecules in tumor immunotherapy [J]. Modern Oncology Medicine, 2022, 30(7): 1308-1312.
ZENG Z, LUO D L, ZHONG M L, et al. Research progress on influencing factors of anti-tumor effect of immune checkpoint inhibitors [J]. Zhongnan Pharmacy, 2022, 20(8): 1867-1874.
ZHENG B, REN T, HUANG Y, et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse[J]. J Hematol Oncol, 2018, 11(1): 16.
LIGON J A, CHOI W, COJOCARU G, et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes[J]. J Immunother Cancer, 2021, 9(5): e001772
TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-2454.
... OS的生长在TAMs作用下可受多种信号转导通路调控.其中Notch信号通路广泛参与调节组织、器官和细胞的发育和分化,其被阻断后可以促进TAMs 向M2表型的极化,促进肿瘤细胞生长和免疫逃逸[20].M1型TAMs在与OS细胞共培养条件下,也可通过释放人70kDa热休克蛋白1样蛋白(heat shock protein family A member 1 like,HSPA1L)诱导细胞凋亡,从而达到抑制肿瘤细胞生长的目的[21]. ...
1
... OS的生长在TAMs作用下可受多种信号转导通路调控.其中Notch信号通路广泛参与调节组织、器官和细胞的发育和分化,其被阻断后可以促进TAMs 向M2表型的极化,促进肿瘤细胞生长和免疫逃逸[20].M1型TAMs在与OS细胞共培养条件下,也可通过释放人70kDa热休克蛋白1样蛋白(heat shock protein family A member 1 like,HSPA1L)诱导细胞凋亡,从而达到抑制肿瘤细胞生长的目的[21]. ...
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
1
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
1
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
1
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
1
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
1
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
1
... OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关[31].M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加[32].研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭[27,33].外泌体与M2型TAMs诱导的OS转移关系密切.OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移[34].此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移[35].CHEN等[36]研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移.OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后[37].因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移. ...
... TAMs通过发挥机体防御作用,阻止肿瘤相关抗原呈递,抑制细胞毒性T细胞对肿瘤的杀伤[46].其机制是TAMs释放IL-10及TNF刺激TAMs表面程序性死亡受体配体1(programmed cell death ligand-1,PD-L1)的表达,抑制CD8+ T细胞活性,协助肿瘤免疫逃逸[46].此外,TAMs可发挥胞葬作用,通过吞噬凋亡细胞,并释放抗炎症细胞因子如IL-10及TGF-β,避免凋亡细胞内容物的溢出引发的炎症及继发性坏死,从而发挥免疫调控功能[47].随后,TAMs进一步极化为具有促肿瘤表型的M2型TAMs[48].Mer酪氨酸激酶(mertyrosine kinase,MerTK)是TAMs胞葬作用的主要受体[49].一方面,OS中TAMs通过MerTK受体识别凋亡的OS细胞;另一方面,MerTK介导的胞葬作用通过p38/STAT3途径促进TAMs中PD-L1的表达和M2极化,上调精氨酸酶-1、IL-4和IL-10的表达,促进OS免疫耐受. ...
1
... TAMs通过发挥机体防御作用,阻止肿瘤相关抗原呈递,抑制细胞毒性T细胞对肿瘤的杀伤[46].其机制是TAMs释放IL-10及TNF刺激TAMs表面程序性死亡受体配体1(programmed cell death ligand-1,PD-L1)的表达,抑制CD8+ T细胞活性,协助肿瘤免疫逃逸[46].此外,TAMs可发挥胞葬作用,通过吞噬凋亡细胞,并释放抗炎症细胞因子如IL-10及TGF-β,避免凋亡细胞内容物的溢出引发的炎症及继发性坏死,从而发挥免疫调控功能[47].随后,TAMs进一步极化为具有促肿瘤表型的M2型TAMs[48].Mer酪氨酸激酶(mertyrosine kinase,MerTK)是TAMs胞葬作用的主要受体[49].一方面,OS中TAMs通过MerTK受体识别凋亡的OS细胞;另一方面,MerTK介导的胞葬作用通过p38/STAT3途径促进TAMs中PD-L1的表达和M2极化,上调精氨酸酶-1、IL-4和IL-10的表达,促进OS免疫耐受. ...
1
... TAMs通过发挥机体防御作用,阻止肿瘤相关抗原呈递,抑制细胞毒性T细胞对肿瘤的杀伤[46].其机制是TAMs释放IL-10及TNF刺激TAMs表面程序性死亡受体配体1(programmed cell death ligand-1,PD-L1)的表达,抑制CD8+ T细胞活性,协助肿瘤免疫逃逸[46].此外,TAMs可发挥胞葬作用,通过吞噬凋亡细胞,并释放抗炎症细胞因子如IL-10及TGF-β,避免凋亡细胞内容物的溢出引发的炎症及继发性坏死,从而发挥免疫调控功能[47].随后,TAMs进一步极化为具有促肿瘤表型的M2型TAMs[48].Mer酪氨酸激酶(mertyrosine kinase,MerTK)是TAMs胞葬作用的主要受体[49].一方面,OS中TAMs通过MerTK受体识别凋亡的OS细胞;另一方面,MerTK介导的胞葬作用通过p38/STAT3途径促进TAMs中PD-L1的表达和M2极化,上调精氨酸酶-1、IL-4和IL-10的表达,促进OS免疫耐受. ...
1
... TAMs通过发挥机体防御作用,阻止肿瘤相关抗原呈递,抑制细胞毒性T细胞对肿瘤的杀伤[46].其机制是TAMs释放IL-10及TNF刺激TAMs表面程序性死亡受体配体1(programmed cell death ligand-1,PD-L1)的表达,抑制CD8+ T细胞活性,协助肿瘤免疫逃逸[46].此外,TAMs可发挥胞葬作用,通过吞噬凋亡细胞,并释放抗炎症细胞因子如IL-10及TGF-β,避免凋亡细胞内容物的溢出引发的炎症及继发性坏死,从而发挥免疫调控功能[47].随后,TAMs进一步极化为具有促肿瘤表型的M2型TAMs[48].Mer酪氨酸激酶(mertyrosine kinase,MerTK)是TAMs胞葬作用的主要受体[49].一方面,OS中TAMs通过MerTK受体识别凋亡的OS细胞;另一方面,MerTK介导的胞葬作用通过p38/STAT3途径促进TAMs中PD-L1的表达和M2极化,上调精氨酸酶-1、IL-4和IL-10的表达,促进OS免疫耐受. ...
1
... 当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs[50].参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用.ZHAO等[51]研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明.因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略[51-52].而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用[53]. ...
1
... 当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs[50].参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用.ZHAO等[51]研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明.因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略[51-52].而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用[53]. ...
2
... 当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs[50].参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用.ZHAO等[51]研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明.因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略[51-52].而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用[53]. ...
... 当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs[50].参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用.ZHAO等[51]研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明.因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略[51-52].而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用[53]. ...
1
... 当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs[50].参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用.ZHAO等[51]研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明.因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略[51-52].而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用[53]. ...