上海交通大学学报(医学版), 2023, 43(5): 624-630 doi: 10.3969/j.issn.1674-8115.2023.05.014

综述

骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展

魏兰懿,1, 薛晓川1, 陈君君1, 杨全军1, 王梦月2, 韩永龙,1

1.上海交通大学医学院附属第六人民医院药剂科,上海 200030

2.上海交通大学药学院,上海 201109

Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma

WEI Lanyi,1, XUE Xiaochuan1, CHEN Junjun1, YANG Quanjun1, WANG Mengyue2, HAN Yonglong,1

1.Department of Pharmacy, Shanghai Sixth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China

2.School of Pharmacy, Shanghai Jiao Tong University, Shanghai 201109, China

通讯作者: 韩永龙,电子信箱:yonglongh@126.com

编委: 吴洋

收稿日期: 2023-02-03   接受日期: 2023-03-30  

基金资助: 国家自然科学基金.  82003987
上海市儿童基金会公益项目

Corresponding authors: HAN Yonglong, E-mail:yonglongh@126.com.

Received: 2023-02-03   Accepted: 2023-03-30  

作者简介 About authors

魏兰懿(1998—),女,硕士生;电子信箱:26062x@sjtu.edu.cn。 E-mail:26062x@sjtu.edu.cn

摘要

骨肉瘤(osteosarcoma,OS)是儿童和青少年常见的原发性恶性骨肿瘤,其易复发性和高转移率已成为目前临床亟待解决的难题,尚无有效的治疗方法。近年来有研究提示靶向肿瘤微环境很有可能成为OS新的治疗方向。肿瘤微环境中免疫细胞浸润可促进肿瘤炎症发生和肿瘤血管生成。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)是肿瘤微环境中最重要的免疫细胞,在OS发展及转移中发挥重要作用。该文综述了TAMs极化对肿瘤细胞的作用,并从TAMs影响OS肿瘤生长及侵袭转移,介导OS化学治疗耐药、干细胞样表型以及免疫抑制方面,分析TAMs对OS发生和发展过程的影响;总结近年通过靶向TAMs发挥对OS治疗作用的研究进展,包括影响TAMs募集、促使M2型TAMs向M1型极化、靶向CD47促进TAMs的吞噬作用和靶向TAMs免疫检查点,旨在为OS的靶向治疗提供新方向和新思路。

关键词: 骨肉瘤 ; 肿瘤相关巨噬细胞 ; 肿瘤微环境 ; 靶向治疗

Abstract

Osteosarcoma (OS) is a common primary malignant bone tumor in children and adolescents. The high recurrence and metastasis rate have become a common clinical problem to be solved, but there is no effective treatment. In recent years, studies have suggested that targeting the tumor microenvironment will likely become a new treatment direction for OS. Immune cell infiltration in the tumor microenvironment can promote tumor inflammation and angiogenesis. Tumor-associated macrophages (TAMs) are the most important immune cells in the tumor microenvironment, which play important roles in the development and metastasis of OS. The article reviews the effect of TAMs polarization on tumor cells and describes the effect of TAMs on the occurrence and development of OS from five aspects, including TAMs affecting the growth, invasion and metastasis, mediating chemotherapy resistance, stem cell-like phenotype, and immunosuppression of OS. The review summarizes the research progress of targeting TAMs in the treatment of OS in the past years, including influencing the recruitment of TAMs, promoting the polarization of M2 type to M1 type, targeting CD47 to promote the phagocytosis of TAMs, and targeting the immune checkpoint of TAMs, aiming to provide new directions and ideas for targeted therapy of OS.

Keywords: osteosarcoma ; tumor-associated macrophages ; tumor microenvironment ; targeted therapy

PDF (1285KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

魏兰懿, 薛晓川, 陈君君, 杨全军, 王梦月, 韩永龙. 骨肉瘤免疫微环境中肿瘤相关巨噬细胞及其靶向治疗的研究进展. 上海交通大学学报(医学版)[J], 2023, 43(5): 624-630 doi:10.3969/j.issn.1674-8115.2023.05.014

WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(5): 624-630 doi:10.3969/j.issn.1674-8115.2023.05.014

骨肉瘤(osteosarcoma,OS)是儿童和青少年常见的原发性恶性骨肿瘤,占所有骨肿瘤的31%,发病率仅次于骨髓瘤1。OS目前主要治疗手段为保肢手术联合阿霉素、顺铂和氨甲蝶呤辅助化学治疗(化疗)。该方案对OS患者有一定的疗效,但其5年生存率近年来并未得到明显改善,仍低于70%2-3。OS的侵袭转移是患者死亡的主要原因。超过80%的患者在手术治疗后会发生肺转移,且预后极差,晚期存活率仅为20%,主要原因是OS化疗耐药的产生和缺乏特异性的治疗靶点4。然而,肿瘤细胞对治疗的反应不仅取决于它们所包含的基因组畸变的复杂性,而且还受到肿瘤细胞所处环境即肿瘤微环境(tumor microenvironment,TME)中众多动态特性的调节5。TME的整体特征是免疫抑制,帮助肿瘤细胞逃避免疫监视,同时促进肿瘤炎症发生和肿瘤血管生成6。TME的异质性是肿瘤转移、复发和耐药的主要促成因素7。因此,研究者们对肿瘤的关注已经从肿瘤细胞本身扩展到TME,以寻找新的特异性OS治疗靶点,改善患者预后。

OS免疫微环境由OS细胞、间充质细胞、巨噬细胞、血管内皮细胞、细胞外基质共同组成。有研究表明肿瘤相关成纤维细胞能够维系OS的恶性倾向8。间充质干细胞及其分化的基质细胞可通过诱导一系列细胞因子分泌而促进OS的生长和转移9。其中,肿瘤相关巨噬细胞(tumour-associated macrophages,TAMs)占免疫细胞的50%以上,是OS中最重要的免疫性浸润细胞,参与炎症反应和维持组织稳态10。TAMs在TME中是一把“双刃剑”。作为高度可塑性细胞,能够被TME中的各种信号激活,形成M1型TAMs,参与OS的生长、血管生成、转移和干细胞样表型等过程11;同时也可以介导癌细胞的吞噬作用和肿瘤杀伤,发挥抗肿瘤作用。早期临床试验也表明,靶向髓系细胞的免疫检查点确实具有抗肿瘤潜力12。其中非特异性免疫调节剂米福莫肽的临床试验最为经典,可通过激活巨噬细胞和单核细胞的免疫应答而发挥抗肿瘤作用。Ⅰ期和Ⅱ期临床试验证明了米福莫肽的生物学有效性;Ⅲ期临床试验证明米福莫肽联合化疗可提高OS患者的生存率,并且安全性可控(NCT00631631)13。嵌合抗原受体细胞疗法是目前具有前景的新疗法,其通过特异性识别肿瘤细胞发挥抗肿瘤作用。由于源自单核细胞的巨噬细胞可以不断被募集到肿瘤组织中,巨噬细胞也可能成为细胞治疗领域极具前瞻性的候选细胞。本文围绕TAMs在OS发生、发展相关的各过程中的作用,以及靶向TAMs治疗OS的研究进展进行综述,重点介绍TAMs对OS生长、转移、血管生成、化疗耐药和干细胞表型的影响及作用机制,为OS的治疗提供新的治疗策略和药物研发的方向,以期提高OS患者生存率。

1 OS研究概况

OS是一种由遗传和表观遗传变化导致的分化型疾病14。OS的治疗方法包括放射治疗(放疗)、化疗及手术切除等。尽管治疗方式多样,但OS患者预后仍未见明显改善。主要是由于化疗引起的严重不良反应和化疗耐药的产生,以及OS自身遗传高度不稳定、组织学异质性大并具有高度侵袭性,使得靶向药物的研发困难重重15。此外,实体瘤抗原的异质性、肿瘤细胞免疫逃逸也是影响治疗效果的重要原因。有研究报道,TME中免疫细胞浸润可帮助肿瘤细胞实现免疫逃逸;通过免疫检查点阻断疗法、纳米给药系统以及影响TME中TAMs极化等可阻止肿瘤细胞免疫逃逸,改善OS放化疗及手术患者的预后16。TAMs作为TME中免疫细胞的主要亚群,在肿瘤生长转移和机体免疫应答中扮演关键角色,有望成为OS免疫治疗的新靶点。

2 TAMs对OS发生和发展的影响

TAMs主要来源于骨髓前体细胞分化而来的单核细胞。在肿瘤局部微环境的影响下,TAMs主要被极化成2种不同的类型,包括经典激活的M1型TAMs和替代激活的M2型TAMs17。M1型和M2型TAMs在免疫表型及生理功能上存在差异。M1型TAMs是促炎细胞,具有很强的抗原呈递能力,从而诱导免疫反应,杀死肿瘤细胞;M2型TAMs抗原呈递能力弱,能够加速伤口愈合,刺激血管生成,帮助肿瘤细胞发挥免疫逃逸作用18。LIU等19利用单细胞转录组学揭示了OS中TAMs的异质性,从骨髓细胞中鉴定出6个巨噬细胞群(C1~C3、C5、C8和C11)。其中C2_NR4A3巨噬细胞群均表达M1型和M2型标志物细胞免疫因子及趋化因子3(chemokine 3,CCL3)、CCL4、肿瘤坏死因子(tumor necrosis factor,TNF)、受体酪氨酸激酶AXL、CD163和甘露糖受体C1(mannose receptor C1,MRC1),C3_TXNIP巨噬细胞群被发现与抗炎M2极化巨噬细胞相似,而C5_IFIT1巨噬细胞则向M1型TAMs的表型偏倚。这一发现解释了TAMs在OS中可能具有抗肿瘤能力。然而,仍需要进一步的研究详细阐述TAMs在OS的TME中的异质性,更好地奠定TAMs在OS免疫治疗中的突出地位。

2.1 TAMs影响OS肿瘤生长

OS的生长在TAMs作用下可受多种信号转导通路调控。其中Notch信号通路广泛参与调节组织、器官和细胞的发育和分化,其被阻断后可以促进TAMs 向M2表型的极化,促进肿瘤细胞生长和免疫逃逸20。M1型TAMs在与OS细胞共培养条件下,也可通过释放人70kDa热休克蛋白1样蛋白(heat shock protein family A member 1 like,HSPA1L)诱导细胞凋亡,从而达到抑制肿瘤细胞生长的目的21

肿瘤细胞分泌的外泌体也是实现肿瘤细胞与TAMs间对话的关键因子之一22。一方面,肿瘤细胞分泌的外泌体会影响TAMs的极化;另一方面,TAMs来源的外泌体可影响肿瘤细胞的生物学过程。在OS中,M2型TAMs可通过上调作为外泌体之一的长链非编码RNA(long non-coding RNAs,lncRNAs)的表达参与肿瘤的生长23。TAMs释放的lncRNA能够通过与下游关键效应因子微小RNA(microRNAs,miRNAs)结合,导致miRNA下游基因表达沉默,从而促进OS发展24。YANG等25的研究表明,lncRNA RP11-361F15.2通过作用于microRNA-30c-5p/bB4轴介导TAMs的M2样极化并促进OS进展。ZHANG等26的研究表明TAMs来源的lncRNA LIFR-AS1可通过miR-29a/NFIA轴促进OS细胞增殖、侵袭和抑制细胞凋亡。ZHONG等27的研究表明Rab22a-NeoF1融合蛋白通过与富含脯氨酸的酪氨酸激酶2(proline-rich tyrosine kinase 2,Pyk2)结合激活TAMs中的STAT3,诱导M2型TAMs极化而重塑TME,加快OS发展进程。此外,TAMs还可上调与OS细胞增殖、迁移及侵袭相关的lncRNA PURPL23,以及预测OS患者不良预后的lncRNA MALAT128、lncRNA XIST29和lncRNA NORAD30,提示lncRNAs在TAMs中构成复杂网络,参与调节OS进程。因此,来自TAMs的lncRNAs有望成为OS潜在的新型治疗靶点。

2.2 TAMs影响OS侵袭转移

OS患者发生术后复发或转移是影响患者生存的主要原因,导致5年生存率不超过25%,且其中80%的患者的死亡原因与肺转移有关31。M2型TAMs可促进OS的转移;且与原发性OS相比,肺转移OS组织中M2型TAMs相较于M1型占比也显著增加32。研究显示,M2型TAMs可通过分泌CCL18和白介素-1β(interleukin-1β,IL-1β),上调环氧合酶-2(cyclooxygenase-2,COX-2)和基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)表达,促进OS细胞的迁移和侵袭2733。外泌体与M2型TAMs诱导的OS转移关系密切。OS分泌的外泌体可通过T细胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain-containing protein 3,TIM3),诱导TAMs的M2极化,从而分泌转化生长因子β(transforming growth factor-β,TGF-β)、血管内皮生长因子(vascular endothelial growth factor,VEGF),促进OS的迁移侵袭、上皮-间质转化和肺转移34。此外,M2型TAMs可通过分泌外泌体miR-221-3p和磷酸化信号转导及转录激活因子3(signal transduction and activator of transcription 3,STAT3)促进OS细胞的转移35。CHEN等36研究发现,lncRNA LOC100129620通过调控下游miR-335-3p/CDK6信号通路促进TAMs向M2型极化,从而促进OS转移。OS中骨形态发生蛋白受体2(bone morphogenetic protein receptor type 2,BMPR2)的高表达,也可导致M2型TAMs在OS中轻度浸润,促进OS转移,影响患者预后37。因此,通过阻止TAMs向M2型TAMs极化有望抑制OS的转移。

2.3 靶向TAMs改善OS化疗耐药

OS在分化的不同阶段可出现基因组异质性的停滞,导致OS对免疫治疗不敏感或出现耐药肿瘤亚型,使得传统的手术、化疗和靶向治疗等疗法在几十年来并未有效提高总体生存率38。TAMs与肿瘤对化疗药物敏感性密切相关,化疗药物通过抑制肿瘤细胞增殖、促进其凋亡来阻止肿瘤生长;而TAMs可对化疗药物引起的组织损伤进行修复,从而减弱对肿瘤细胞的杀伤作用39。研究表明,胃癌小鼠中M2型TAMs能够提高肿瘤细胞对顺铂的耐药性40。ZHENG等41采用乳腺癌细胞和骨髓源性TAMs共培养,发现TAMs通过促进IL-6的释放增强乳腺癌对阿霉素的耐药性。DONG等42发现新辅助化疗药物即大剂量氨甲蝶呤、阿霉素、顺铂和异环磷酰胺联合治疗可促进TAMs内炎症小体组装,激活半胱氨酸天冬氨酸蛋白水解酶-1(caspase-1),刺激TAMs分泌IL-1β,降低OS对化疗药物的敏感性,从而抑制肿瘤细胞凋亡。因此,探索靶向TAMs的药物对改善OS对化疗药物耐药具有重要意义。

2.4 TAMs介导OS的干细胞样表型

在OS患者中,TAMs可通过维持OS的干细胞样表型促进肿瘤细胞的增殖。肿瘤干细胞(cancer stem cell,CSCs)能够促进肿瘤形成、转移以及化疗抵抗43。据报道44,在乳腺癌中,MSCs分泌的IL-6可以将浸润的TAMs极化为M2型来维持CSCs的干细胞样表型,从而促进肿瘤细胞的侵袭和转移;TAMs还可分泌IL-10激活JAK1/STAT1/核转录因子κB(nuclear factor-κB,NF-κB)/Notch1下游信号通路,促进非小细胞肺癌的干细胞样表型。SHAO等45研究发现M2型TAMs通过激活CSCs促进OS发生,而全反式维甲酸(all-trans retinoic acid,ATRA)可抑制M2型TAMs极化,抑制肿瘤形成及CSCs干性。因此,TAMs通过维持OS的干细胞样表型促进肿瘤细胞无限增殖,而作用于TAMs的药物可能抑制这一作用并防止OS复发。

2.5 TAMs介导OS免疫抑制

TAMs通过发挥机体防御作用,阻止肿瘤相关抗原呈递,抑制细胞毒性T细胞对肿瘤的杀伤46。其机制是TAMs释放IL-10及TNF刺激TAMs表面程序性死亡受体配体1(programmed cell death ligand-1,PD-L1)的表达,抑制CD8+ T细胞活性,协助肿瘤免疫逃逸46。此外,TAMs可发挥胞葬作用,通过吞噬凋亡细胞,并释放抗炎症细胞因子如IL-10及TGF-β,避免凋亡细胞内容物的溢出引发的炎症及继发性坏死,从而发挥免疫调控功能47。随后,TAMs进一步极化为具有促肿瘤表型的M2型TAMs48。Mer酪氨酸激酶(mertyrosine kinase,MerTK)是TAMs胞葬作用的主要受体49。一方面,OS中TAMs通过MerTK受体识别凋亡的OS细胞;另一方面,MerTK介导的胞葬作用通过p38/STAT3途径促进TAMs中PD-L1的表达和M2极化,上调精氨酸酶-1、IL-4和IL-10的表达,促进OS免疫耐受。

3 靶向TAMs治疗OS的机制研究

针对TAMs设计OS辅助治疗药物已经成为目前研究的焦点,并主要通过影响TAMs募集,促使M2型TAMs向M1型极化,促进TAMs对OS细胞的吞噬,调控TAMs免疫检查点的表达,而改善OS患者的预后。

3.1 影响TAMs募集

当肿瘤细胞、间质细胞和免疫细胞分泌趋化因子和细胞因子造成机体局部缺氧时,血液中的巨噬细胞可被募集到TME中形成TAMs50。参与成骨细胞分化、肿瘤发生及肿瘤转移的半胱氨酸酸性分泌蛋白类似物(secreted protein acidic and rich in cysteine like,SPARCL)家族成员SPARCL1在TAMs介导的OS转移中发挥关键作用。ZHAO等51研究发现,SPARCL1通过激活WNT/β-catenin信号通路增加OS细胞中CCL5的表达,促进M1型TAMs的募集从而抑制OS转移,但促使TAMs极化为M1表型的具体机制仍有待进一步研究阐明。因此,靶向SPARCL1可能是阻止OS转移的一种治疗策略51-52。而受TNF-α、IL-1β调控的IL-34则通过增加新血管生成和M2型TAMs的招募促进OS的生长,调控IL-34的表达可能在控制肿瘤发展中发挥关键作用53

3.2 促使M2TAMsM1型极化

理想的靶向TAMs治疗OS的方法是将M2型TAMs转化为M1型,从而改善TME及增强抗肿瘤性免疫54。在OS发生和发展过程中,TAMs被极化成M2亚型,而M1型TAMs能够显著阻止OS细胞的转移,促进其凋亡55。PUNZO等56研究发现米法莫肽能够调控OS中TAMs的M1/M2极化状态,使TAMs由M2型向M1型转化,并阻止M2型TAMs极化,降低IL-17R及STAT3水平,抑制肿瘤细胞增殖,诱导肿瘤细胞分化。氨甲蝶呤作为OS化疗的一线药物,对机体的免疫系统也会产生一定影响。研究表明氨甲蝶呤能够诱导M1型TAMs的标志物CD86表达水平升高,并通过激活NF-κB通路促进M1型TAMs极化,从而诱导OS细胞凋亡57

纳米载药系统因具有药物释放的靶向性,可减少对非靶向部位的毒性,并具有更高的稳定性,因此相比传统制剂具有更高的应用价值58。ZHANG等59设计一种pH值敏感的纳米载体递送化疗药物多西环素、顺铂和雷西莫特,能够准确靶向OS,减少TME中M2型TAMs的比例并促进M1型TAMs极化,在促进OS细胞凋亡的同时,也改善了对TME的免疫抑制作用。该方案在OS小鼠模型体内取得理想疗效。基于纳米技术的药物递送系统,极大地提高了抗肿瘤效率,有望成为应用于OS的免疫辅助化疗手段。

3.3 靶向CD47促进TAMs的吞噬作用

OS细胞表面的CD47单克隆抗体通过激活OS中TAMs吞噬消灭肿瘤细胞,然而在动物实验中CD47单抗治疗不能治愈OS小鼠60。研究表明,肿瘤细胞能够通过释放一种被称为“不吃我”的信号逃避TAMs的吞噬,CD47分子能够与巨噬细胞表面抑制信号调节蛋白α(signal regulatory protein-α,SIRPα)结合,发出“不吃我”信号,抑制TAMs对OS细胞的吞噬作用61。MOHANTY等62发现,CD47单克隆抗体在OS中可触发TAMs对肿瘤细胞的吞噬和杀伤作用,降低体内肿瘤负荷。因此,可以考虑将CD47单克隆抗体疗法与其他疗法联合使用,最大限度地提高抗OS的疗效。

3.4 调控TAMs免疫检查点的表达

免疫检查点与肿瘤细胞的增殖、侵袭及迁移密切相关,可作为肿瘤治疗靶点63。免疫检查点抑制剂已广泛应用到临床肿瘤的治疗中,主要包括PD-L1抑制剂和细胞毒性T淋巴细胞相关抗原-4抑制剂64。研究显示,PD-L1抑制剂纳武利尤单克隆抗体通过增强CD4+和CD8+淋巴细胞以及肺中CD8+淋巴细胞的溶细胞活性,抑制人源化小鼠OS的肺部转移65。TAMs能够通过表达免疫检查点PD-L1抑制T细胞的分化、增殖,促进OS的免疫逃逸,导致患者的不良预后66。但在OS领域,免疫检查点抑制剂对TAMs的作用未见相关报道。鉴于PD-L1抑制剂在非小细胞肺癌、结直肠癌等肿瘤中产生的显著疗效,推测靶向PD-L1的药物对OS治疗同样具有巨大的研究价值和广阔的应用前景67。因此,深入研究PD-L1对TAMs的作用,开发靶向PD-L1的新型小分子药物,进而恢复T细胞的肿瘤杀伤活性,有望改善OS的预后。

4 结语

TAMs作为OS微环境中的主要免疫成分,大量基础研究和早期临床试验表明其在OS中发挥举足轻重的作用,已成为OS免疫治疗领域的研究热点。同时,TAMs可以通过作用于下游炎症因子、血管生长因子等促进OS血管生成及干细胞表型,加速OS生长及转移,影响患者预后;并且在化疗过程中,TAMs介导OS耐药,影响OS疗效。因此,靶向TAMs有望成为抗OS治疗的重要手段,但仍需要更具前瞻性的临床试验进行验证,以改进和开发靶向TAMs治疗OS的有关策略。嵌合抗原受体T细胞疗法(chimeric antigen receptor T,CAR-T)可特异性地识别肿瘤细胞抗原,从而发挥杀伤肿瘤细胞的作用;而与CAR-T疗法相比,鲜有TAMs在嵌合抗原受体领域的研究。使TAMs合理表达嵌合抗原受体,进而与手术、放化疗等联合应用,可能成为改善OS患者预后的另一种治疗策略。

作者贡献声明

王梦月、韩永龙参与了文章选题设计,陈君君、杨全军参与了写作指导,魏兰懿、薛晓川参与了论文的写作和修改。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

WANG Mengyue and HAN Yonglong participated in the topic selection design. CHEN Junjun and YANG Quanjun participated in the writing guidance. WEI Lanyi and XUE Xiaochuan participated in the writing and revision of the paper. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

KELLEHER F C, O′SULLIVAN H. Monocytes, macrophages, and osteoclasts in osteosarcoma[J]. J Adolesc Young Adult Oncol, 2017, 6(3): 396-405.

[本文引用: 1]

HUANG Q, LIANG X, REN T, et al. The role of tumor-associated macrophages in osteosarcoma progression-therapeutic implications[J]. Cell Oncol (Dordr), 2021, 44(3): 525-539.

[本文引用: 1]

SPALATO M, ITALIANO A. The safety of current pharmacotherapeutic strategies for osteosarcoma[J]. Expert Opin Drug Saf, 2021, 20(4): 427-438.

[本文引用: 1]

CHONG Z X, YEAP S K, HO W Y. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma[J]. Pharmacol Res, 2021, 172: 105818.

[本文引用: 1]

RUFFELL B, COUSSENS L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell, 2015, 27(4): 462-472.

[本文引用: 1]

ZHU T, HAN J, YANG L, et al. Immune microenvironment in osteosarcoma: components, therapeutic strategies and clinical applications[J]. Front Immunol, 2022, 13: 907550.

[本文引用: 1]

XUE R, ZHANG Q, CAO Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity[J]. Nature, 2022, 612(7938): 141-147.

[本文引用: 1]

折胜利, 宋兴华, 周杨, 等. 骨肉瘤细胞外泌体调控JAK2/STAT3信号通路影响成纤维细胞向肿瘤相关成纤维细胞转化 [J]. 西部医学, 2021, 33(8): 1096-1100, 1105.

[本文引用: 1]

ZHE S L, SONG X H, ZHOU Y, et al. Effects of osteosarcoma cell exosomes on the transformation of fibroblasts into tumor-associated fibroblasts by regulating JAK2/STAT3 signaling pathway [J]. Western Medicine, 2021, 33(8): 1096-1100, 1105.

[本文引用: 1]

刘汉涛, 赵良虎, 秦宏敏. 骨髓间充质干细胞外泌体miR-25-3p调控骨肉瘤细胞增殖迁移及侵袭能力的功能与机制研究 [J]. 河北医学, 2022, 28(4): 529-534.

[本文引用: 1]

LIU H T, ZHAO L H, QIN H M. Study on the function and mechanism of bone marrow mesenchymal stem cell exosomal miR-25-3p regulating the proliferation, migration and invasion of osteosarcoma cells [J]. Hebei Medicine, 2022, 28(4): 529-534.

[本文引用: 1]

WEI C, YANG C, WANG S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64.

[本文引用: 1]

NOY R, POLLARD J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61.

[本文引用: 1]

MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820.

[本文引用: 1]

ANDERSON P M, MEYERS P, KLEINERMAN E, et al. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments[J]. Pediatr Blood Cancer, 2014, 61(2): 238-244.

[本文引用: 1]

HEYMANN M F, LÉZOT F, HEYMANN D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[J]. Cell Immunol, 2019, 343: 103711.

[本文引用: 1]

XIE D, WANG Z, LI J, et al. Targeted delivery of chemotherapeutic agents for osteosarcoma treatment[J]. Front Oncol, 2022, 12: 843345.

[本文引用: 1]

刘莹莹, 文金生, 邢景军, 等. 原发性恶性骨肿瘤免疫疗法研究现状及展望 [J]. 生命的化学, 2022, 42(2): 283-290.

[本文引用: 1]

LIU Y Y, WEN J S, XING J J, et al. Research status and prospect of immunotherapy for primary malignant bone tumors [J]. Chemistry of Life, 2022, 42(2): 283-290.

[本文引用: 1]

NIU J, YAN T, GUO W, et al. Identification of potential therapeutic targets and immune cell infiltration characteristics in osteosarcoma using bioinformatics strategy[J]. Front Oncol, 2020, 10: 1628.

[本文引用: 1]

QIU S Q, WAAIJER S J H, ZWAGER M C, et al. Tumor-associated macrophages in breast cancer: innocent bystander or important player?[J]. Cancer Treat Rev, 2018, 70: 178-189.

[本文引用: 1]

LIU Y, FENG W, DAI Y, et al. Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma[J]. Front Oncol, 2021, 11: 709210.

[本文引用: 1]

REN S, ZHANG X, HU Y, et al. Blocking the Notch signal transduction pathway promotes tumor growth in osteosarcoma by affecting polarization of TAM to M2 phenotype[J]. Ann Transl Med, 2020, 8(17): 1057.

[本文引用: 1]

LI J, ZHAO C, LI Y, et al. Osteosarcoma exocytosis of soluble LGALS3BP mediates macrophages toward a tumoricidal phenotype[J]. Cancer Lett, 2022, 528: 1-15.

[本文引用: 1]

ZHANG H, LU J, LIU J, et al. Advances in the discovery of exosome inhibitors in cancer[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1322-1330.

[本文引用: 1]

HE F, DING G, JIANG W, et al. Effect of tumor-associated macrophages on lncRNA PURPL/miR-363/PDZD2 axis in osteosarcoma cells[J]. Cell Death Discov, 2021, 7(1): 307.

[本文引用: 2]

CUI J J, WANG Y, XUE H W. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis[J]. Bioengineered, 2022, 13(4): 8370-8381.

[本文引用: 1]

YANG D, LIU K, FAN L, et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-like polarization of tumor-associated macrophages of CPEB4[J]. Cancer Lett, 2020, 473: 33-49.

[本文引用: 1]

ZHANG H, YU Y, WANG J, et al. Macrophages-derived exosomal lncRNA LIFR-AS1 promotes osteosarcoma cell progression via miR-29a/NFIA axis[J]. Cancer Cell Int, 2021, 21(1): 192.

[本文引用: 1]

ZHONG L, LIAO D, LI J, et al. Rab22a-NeoF1 fusion protein promotes osteosarcoma lung metastasis through its secretion into exosomes[J]. Signal Transduct Target Ther, 2021, 6(1): 59.

[本文引用: 2]

HUO Y, LI Q, WANG X, et al. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2[J]. Oncotarget, 2017, 8(29): 46993-47006.

[本文引用: 1]

WANG W, SHEN H, CAO G, et al. Long non-coding RNA XIST predicts poor prognosis and promotes malignant phenotypes in osteosarcoma[J]. Oncol Lett, 2019, 17(1): 256-262.

[本文引用: 1]

WANG X, ZOU J, CHEN H, et al. Long noncoding RNA NORAD regulates cancer cell proliferation and migration in human osteosarcoma by endogenously competing with miR-199a-3p[J]. IUBMB Life, 2019, 71(10): 1482-1491.

[本文引用: 1]

ZHANG B, ZHANG Y, LI R, et al. The efficacy and safety comparison of first-line chemotherapeutic agents (high-dose methotrexate, doxorubicin, cisplatin, and ifosfamide) for osteosarcoma: a network meta-analysis[J]. J Orthop Surg Res, 2020, 15(1): 51.

[本文引用: 1]

HAN Y, GUO W, REN T, et al. Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis[J]. Cancer Lett, 2019, 440/441: 116-125.

[本文引用: 1]

SU Y, ZHOU Y, SUN Y J, et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1[J]. J Mol Med (Berl), 2019, 97(1): 49-61.

[本文引用: 1]

CHENG Z, WANG L, WU C, et al. Tumor-derived exosomes induced M2 macrophage polarization and promoted the metastasis of osteosarcoma cells through tim-3[J]. Arch Med Res, 2021, 52(2): 200-210.

[本文引用: 1]

QUERO L, TIADEN A N, HANSER E, et al. miR-221-3p drives the shift of M2-macrophages to a pro-inflammatory function by suppressing JAK3/STAT3 activation [J]. Front Immunol, 2019, 10: 3087.

[本文引用: 1]

CHEN Y, TANG G, QIAN H, et al. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization[J]. Aging (Albany NY), 2021, 13(10): 14258-14276.

[本文引用: 1]

CAO H, QUAN S, ZHANG L, et al. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma[J]. Oncol Lett, 2021, 21(5): 391.

[本文引用: 1]

SONG Y J, XU Y, ZHU X, et al. Immune landscape of the tumor microenvironment identifies prognostic gene signature CD4/CD68/CSF1R in osteosarcoma[J]. Front Oncol, 2020, 10: 1198.

[本文引用: 1]

LIANG X, GUO W, REN T, et al. Macrophages reduce the sensitivity of osteosarcoma to neoadjuvant chemotherapy drugs by secreting Interleukin-1 beta[J]. Cancer Lett, 2020, 480: 4-14.

[本文引用: 1]

LUO Z W, LIU P P, WANG Z X, et al. Macrophages in osteosarcoma immune microenvironment: implications for immunotherapy[J]. Front Oncol, 2020, 10: 586580.

[本文引用: 1]

ZHENG P, CHEN L, YUAN X, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 53.

[本文引用: 1]

DONG X, SUN R, WANG J, et al. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer[J]. Biochem Pharmacol, 2020, 182: 114289.

[本文引用: 1]

NAJAFI M, FARHOOD B, MORTEZAEE K. Cancer stem cells (CSCs) in cancer progression and therapy[J]. J Cell Physiol, 2019, 234(6): 8381-8395.

[本文引用: 1]

YANG L, DONG Y, LI Y, et al. IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer[J]. Int J Cancer, 2019, 145(4): 1099-1110.

[本文引用: 1]

SHAO X J, XIANG S F, CHEN Y Q, et al. Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells[J]. Acta Pharmacol Sin, 2019, 40(10): 1343-1350.

[本文引用: 1]

吴婧婧, 孙妩弋, 魏伟. 肿瘤相关巨噬细胞在肝癌中的作用及靶向治疗研究进展 [J]. 安徽医科大学学报, 2017, 52(12): 1901-1905.

[本文引用: 2]

WU J J, SUN W Y, WEI W. Research progress on the role of tumor-associated macrophages in liver cancer and targeted therapy [J]. Journal of Anhui Medical University, 2017, 52(12): 1901-1905.

[本文引用: 2]

宋呈祥. CTRP9对小鼠巨噬细胞胞葬作用的影响及机制研究 [D]. 济南:山东大学, 2021.

[本文引用: 1]

SONG C X. The effect of CTRP9 on the efferocytosis of mouse macrophages and its mechanism [D]. Jinan: Shandong University, 2021.

[本文引用: 1]

MYERS K V, AMEND S R, PIENTA K J. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 94.

[本文引用: 1]

DORAN A C, YURDAGUL A, TABAS I. Efferocytosis in health and disease[J]. Nat Rev Immunol, 2020, 20(4): 254-267.

[本文引用: 1]

高松, 徐培钧, 郝继辉. 巨噬细胞在肿瘤发展及治疗中的研究进展 [J]. 中国细胞生物学学报, 2022, 44(4): 572-582.

[本文引用: 1]

GAO S, XU P J, HAO J H. Research progress of macrophages in tumor development and treatment [J]. Chinese Journal of Cell Biology, 2022, 44(4): 572-582.

[本文引用: 1]

ZHAO S J, JIANG Y Q, XU N W, et al. SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT-receptor complex[J]. Oncogene, 2018, 37(8): 1049-1061.

[本文引用: 2]

RIBEIRO N, SOUSA S R, BREKKEN R A, et al. Role of SPARC in bone remodeling and cancer-related bone metastasis [J]. J Cell Biochem, 2014, 115(1): 17-26.

[本文引用: 1]

SÉGALINY A I, MOHAMADI A, DIZIER B, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J]. Int J Cancer, 2015, 137(1): 73-85.

[本文引用: 1]

CHEN D, XIE J, FISKESUND R, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype[J]. Nat Commun, 2018, 9(1): 873.

[本文引用: 1]

XIAO Q, ZHANG X, WU Y, et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma [J]. Tumour Biol, 2014, 35(8): 7611-7616.

[本文引用: 1]

PUNZO F, BELLINI G, TORTORA C, et al. Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells [J]. Oncotarget, 2020, 11(7): 687-698.

[本文引用: 1]

尹芳芳, 许磊晶, 贺美娟, 等. 甲氨蝶呤诱导巨噬细胞M1极化促进骨肉瘤细胞凋亡的实验研究 [J]. 现代生物医学进展, 2020, 20(11): 2006-2011.

[本文引用: 1]

YIN F F, XU L J, HE M J, et al. Methotrexate induces M1 polarization of macrophages and promotes apoptosis of osteosarcoma cells [J]. Advances in Modern Biomedicine, 2020, 20(11): 2006-2011.

[本文引用: 1]

GOWD V, AHMAD A, TARIQUE M, et al. Advancement of cancer immunotherapy using nanoparticles-based nanomedicine[J]. Semin Cancer Biol, 2022, 86(pt 2): 624-644.

[本文引用: 1]

ZHANG Y, YUAN T, LI Z, et al. Hyaluronate-based self-stabilized nanoparticles for immunosuppression reversion and immunochemotherapy in osteosarcoma treatment[J]. ACS Biomater Sci Eng, 2021, 7(4): 1515-1525.

[本文引用: 1]

MOHANTY S, YERNENI K, THERUVATH J L, et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 MAb immunotherapy in osteosarcoma[J]. Cell Death Dis, 2019, 10(2): 36.

[本文引用: 1]

XU J F, PAN X H, ZHANG S J, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models[J]. Oncotarget, 2015, 6(27): 23662-23670.

[本文引用: 1]

MOHANTY S, AGHIGHI M, YERNENI K, et al. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell ‘don′t eat me’ signals off and ‘eat me’ signals on[J]. Mol Oncol, 2019, 13(10): 2049-2061.

[本文引用: 1]

王成吕, 聂玉洁, 潘润桑, 等. 三种新兴的免疫检查点分子在肿瘤免疫治疗中的研究进展 [J]. 现代肿瘤医学, 2022, 30(7): 1308-1312.

[本文引用: 1]

WANG C L, NIE Y J, PAN R S, et al. Research progress of three emerging immune checkpoint molecules in tumor immunotherapy [J]. Modern Oncology Medicine, 2022, 30(7): 1308-1312.

[本文引用: 1]

曾峥, 罗丹玲, 钟明利, 等. 免疫检查点抑制剂抗肿瘤作用的影响因素研究进展 [J]. 中南药学, 2022, 20(8): 1867-1874.

[本文引用: 1]

ZENG Z, LUO D L, ZHONG M L, et al. Research progress on influencing factors of anti-tumor effect of immune checkpoint inhibitors [J]. Zhongnan Pharmacy, 2022, 20(8): 1867-1874.

[本文引用: 1]

ZHENG B, REN T, HUANG Y, et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse[J]. J Hematol Oncol, 2018, 11(1): 16.

[本文引用: 1]

LIGON J A, CHOI W, COJOCARU G, et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes[J]. J Immunother Cancer, 2021, 9(5): e001772

[本文引用: 1]

TOPALIAN S L, HODI F S, BRAHMER J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-2454.

[本文引用: 1]

/