上海交通大学学报(医学版), 2023, 43(7): 795-803 doi: 10.3969/j.issn.1674-8115.2023.07.001

生物材料与再生医学专题

软骨脱细胞基质/丝素蛋白活性支架的构建及其软骨组织工程研究

王千懿,1,2, 冉欣悦1,2, 张沛灵2, 慈政2, 雷东,2, 周广东,1,2

1.潍坊医学院整形外科研究所,潍坊 261042

2.上海市组织工程研究重点实验室,上海交通大学医学院附属第九人民医院整复外科,上海 200125

Construction of acellular cartilage matrix/silk fibroin scaffold and its cartilage tissue engineering study

WANG Qianyi,1,2, RAN Xinyue1,2, ZHANG Peiling2, CI Zheng2, LEI Dong,2, ZHOU Guangdong,1,2

1.Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261042, China

2.Department of Plastic and Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China

通讯作者: 周广东,电子信箱:guangdongzhou@126.com雷 东,电子信箱:370309803@qq.com

编委: 徐敏

收稿日期: 2022-11-30   接受日期: 2023-03-31   网络出版日期: 2023-07-28

基金资助: 国家重点研发计划.  2018YFC1105800.  2017YFC1103900
国家自然科学基金.  82102211.  81871502.  81701843

Corresponding authors: ZHOU Guangdong, E-mail:guangdongzhou@126.comLEI Dong, E-mail:370309803@qq.com.

Received: 2022-11-30   Accepted: 2023-03-31   Online: 2023-07-28

作者简介 About authors

王千懿(1996—),男,硕士生;电子信箱:wangqianyi400@163.com。 E-mail:wangqianyi400@163.com

摘要

目的·利用软骨脱细胞基质(acellular cartilage matrix,ACM)与复合天然丝素蛋白(silk fibroin,SF)生物材料,构建具有双网络交联的生物活性组织工程支架,用于软骨组织再生。方法·用核酸酶消化法消化掉软骨组织中细胞相关的免疫原性成分,并将细胞外基质相关糖蛋白、胶原结构保留,用DNA、组织糖胺多糖、胶原定量试剂盒通过分光光度仪检测软骨组织脱细胞效率。将ACM和SF配置成混合溶液,通过加入乙二醇二缩水甘油醚与两者所含羟基、氨基发生亲核交联反应,冷冻干燥制成多孔仿生支架(n=5),同时以相同方法制备仅含有ACM或SF的多孔支架(n=5)。扫描电子显微镜(scanning electron microscope,SEM)观察支架微观孔隙结构,并通过力学测试对不同组支架的力学强度、弹性模量以及回弹性进行评估,以吸水率反映支架的内外物质交换能力。分离并培养兔耳软骨细胞,接种于ACM-SF支架上,SEM观察培养1、4、7 d后细胞在支架上的黏附、分布与基质分泌情况,活/死细胞双染色观察细胞活力状况,通过CCK-8检测支架的细胞毒性,并于裸鼠皮下植入细胞支架复合物,体内培养4周、8周后,行组织学检测。各组间比较采用单因素方差分析。P<0.05为差异具有统计学意义。结果·经酶消化后的软骨脱细胞基质几乎无细胞残留,并保留了软骨细胞外基质活性成分。ACM-SF制备的复合支架具有相互连通的微孔结构和良好的弹性,湿态下多次压缩后能恢复原状,ACM-SF的吸水率达到了近20倍,为细胞黏附环境提供了有效的物质交换条件。此外,该支架无生物毒性,具有促进软骨细胞增殖的能力;组织学检测显示,ACM-SF支架可在体内再生均质、典型的软骨组织。结论·ACM-SF复合多孔支架具有良好的仿生微环境,可应用于组织工程软骨再生。

关键词: 软骨脱细胞外基质 ; 丝素蛋白 ; 多孔支架 ; 软骨再生

Abstract

Objective ·To construct a bioactivity tissue engineering scaffold with double network cross-linking for cartilage tissue regeneration using an acellular cartilage matrix (ACM) with a natural silk fibroin (SF) biomaterial. Methods ·The cell-associated immunogenic components were removed by nuclease digestion, and the extracellular matrix-associated glycoproteins and collagen structures were retained, The efficiency of cartilage tissue decellularization was measured by spectrophotometry by using DNA, histoglycosaminoglycan and collagen quantification kits. ACM and SF were configured into a mixed solution, and the nucleophilic cross-linking reaction with the hydroxyl and carboxyl groups contained in both was carried out by adding ethylene glycol diglycidyl ether. Then it was freeze-dried to make porous bionic scaffolds (n=5). At the same time, porous scaffolds containing only ACM or SF were prepared by the same method (n=5). The microstructure of the scaffolds was observed by scanning electron microscopy (SEM), and the mechanical strength, elastic modulus and resilience of different groups of scaffolds were evaluated by mechanical tests. The internal and external nutrient exchange capacity of the scaffolds was reacted by water absorption rate. Chondrocytes from rabbit ears were isolated, cultured, and seeded on ACM-SF scaffolds. After 1, 4, and 7 days of culture, the adhesion, distribution, and matrix secretion of the cells on the scaffolds were observed by SEM, and the viability status of the cells was determined by double-staining of live and dead cells. CCK-8 method was used to determine the cytotoxicity of the scaffolds. The cells were implanted subcutaneously in nude mice, cultured in vivo for 4 and 8 weeks, and finally removed for histological testing. Differences between groups were tested by One-Way ANOVA. Statistical significance was accepted at a value of P<0.05. Results ·After enzymatic digestion, almost no cells remained in the acellular matrix, and the active components of the extracellular matrix were retained. The composite scaffold prepared by ACM-SF has interconnected microporous structure and good elasticity, and could recover its original shape after repeated compression in the wet state. The water absorption rate of ACM-SF reached nearly 20 times, which provided an effective material exchange condition for the cell adhesion environment. Histological tests showed that the ACM-SF scaffold regenerated homogeneous, typical cartilage tissue in vivo. Conclusion ·ACM-SF composite porous scaffold has a good bionic microenvironment and can be applied to tissue engineering cartilage regeneration.

Keywords: acellular cartilage matrix ; silk fibroin ; porous scaffold ; cartilage regeneration

PDF (4286KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王千懿, 冉欣悦, 张沛灵, 慈政, 雷东, 周广东. 软骨脱细胞基质/丝素蛋白活性支架的构建及其软骨组织工程研究. 上海交通大学学报(医学版)[J], 2023, 43(7): 795-803 doi:10.3969/j.issn.1674-8115.2023.07.001

WANG Qianyi, RAN Xinyue, ZHANG Peiling, CI Zheng, LEI Dong, ZHOU Guangdong. Construction of acellular cartilage matrix/silk fibroin scaffold and its cartilage tissue engineering study. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(7): 795-803 doi:10.3969/j.issn.1674-8115.2023.07.001

软骨脱细胞基质(acellular cartilage matrix,ACM)作为天然生物成分,去除了细胞组分,保留相关基质,有效降低了天然材料的免疫原性,生物相容性表现优异,并且其所保留的软骨基质成分可提供软骨再生微环境,促进软骨细胞外基质分泌和软骨形成,降解代谢后不会引起免疫反应,已被证明是一种良好的软骨再生生物材料1-3。然而,由ACM生物材料构建的多孔支架形状可加工性差以及力学强度不足,限制了ACM在组织工程领域的应用4-5。复合天然丝素蛋白(silk fibroin,SF)是一种从蚕丝中提取的天然蛋白质生物材料,具有易于加工、分子结构可控、生物相容性优异等优点。SF材料的力学性能可以通过控制蛋白二级结构如β折叠片段在一定程度上加以调控,但仍有局限性6-7。此外,SF缺乏特定软骨生物活性,对软骨组织再生的促进作用受限8。将ACM和SF交联制成多孔支架是一个有效的解决方案,提升力学性能的同时赋予软骨再生生物活性,目前国内外暂无相关报道。此外,理想的软骨组织工程支架应具有许多特性,如良好的弹性、物质交换能力和生物相容性9-10。在本研究中,ACM-SF支架较低的免疫原性和优异的弹性,在多次压缩形变后仍能恢复原有形态结构,其优良的吸水能力有效促进了营养物质的吸收和交换,同时,成分仿生微环境有利于软骨细胞的增殖和软骨生成。基于ACM和SF构建的弹性多孔活性支架证明了其在软骨再生中的潜在应用价值。

1 材料与方法

1.1 主要实验试剂与仪器

脱氧核糖核酸酶(DNase)、核糖核酸酶(RNase)、抑肽酶、Tris-HCl、Triton X-100(Sigma,美国);SF(苏州丝美特生物技术有限公司);乙二醇二缩水甘油醚(ethylene glycol diglycidyl ether,EGDE)、NNN'N′-四甲基乙烯二胺(NNN'N′- tetramethylethylenediamine,TEMED;上海麦克林生化科技股份有限公司);高糖DMEM培养基、0.25%胰蛋白酶、青霉素-链霉素-两性霉素B混合溶液(Gibco,美国);胎牛血清、磷酸盐缓冲液(PBS;Hyclone,美国);DNA定量试剂盒(Invitrogen,美国);组织糖胺多糖(glycosaminoglycan,GAG)定量试剂盒(上海杰美基因医药科技有限公司);胶原定量试剂盒(南京建成科技有限公司)。

扫描电子显微镜(scanning electron microscope,SEM;Zeiss Gemini 300,德国);力学分析仪(Instron-5542,美国);激光共聚焦显微镜(Leica TCS SP5,德国);真空冷冻干燥机(上海亿倍实业发展有限公司);全自动冷冻研磨仪(上海净信实业发展有限公司)。

1.2 软骨脱细胞基质的制备

取新鲜牛肩胛软骨,剔除软骨表面多余组织, 用剪刀将软骨片裁剪成1~2 mm3的小块。将裁剪好的软骨组织样品浸入液氮中进行低温处理5 min,再经冷冻研磨成软骨粉末,参考既往研究11-12的流程进行脱细胞处理:新鲜的软骨样品在摇床(37 ℃,1.61×g)中依次用含有0.5%胰蛋白酶的PBS处理24 h,核酸酶溶液(50 U/mL DNase和1 U/mL RNase在10 mmol/L Tris-HCL中,pH=7.5)处理4 h,低渗Tris-HCL溶液处理20 h,以及Triton X-100溶液(φ=1%)处理24 h。最后,所有样品在PBS溶液中反复清洗12 h,以获得软骨脱细胞基质。在脱细胞过程中使用的所有溶液,每隔4 h用新鲜的替换1次。最后将获得的样品置于-80 ℃冰箱冷冻处理,冻结后经冷冻干燥制成脱细胞基质粉末,干燥条件下储存备用。

1.3 软骨脱细胞效率的评估

1.3.1 组织学评估

将脱细胞处理后的组织块以4%多聚甲醛固定24 h,固定的样品用梯度乙醇脱水,再用二甲苯透明,在52 ℃~54 ℃下包埋在石蜡中,5 μm切片,并进行苏木精-伊红(hematoxylin-eosin,H-E)组织学染色。

1.3.2 生化定量检测

使用DNA定量试剂盒、GAG定量试剂盒、胶原定量试剂盒,按试剂盒所提供操作说明,使用荧光酶标仪检测等量正常软骨与脱细胞处理后软骨的DNA、GAG和胶原含量。

1.4 ACM-SF生物活性支架的制备

取适量的ACM和SF,分别用去离子水在冰浴中振荡溶解,配置成5%的溶液。并取ACM溶液与SF溶液按不同的体积比(ACM∶SF分别为5∶0、1∶4、0∶5)混匀,然后加入EGDE(环氧值≥0.7)交联剂(φ=2.5%)和TEMED(>99%)催化剂(φ=0.25%),得到最终体积。将混合物转移到圆柱形模具中,放在-10 ℃冰箱冷冻状态下交联24 h,室温解冻6 h。将反应获得的不溶性支架用超纯水振荡漂洗3次,每次2 h,去除残留的交联剂和催化剂。最后对支架进行冷冻干燥处理。

1.5 ACM-SF三维多孔支架的材料表征分析

1.5.1 孔径大小评估

通过SEM观察并拍摄3组不同的多孔支架图片,并用Image J软件分析孔径大小,每组选取100个孔隙进行测量。

1.5.2 生物力学评估

将湿态的多孔支架置于力学分析仪上,对样品以垂直方向0.5 mm/min的速度进行施压,直到最大压缩应变的40%,根据应力-应变曲线测得各样品弹性模量。在循环压缩试验中,试样被压缩到最大应变60%,并循环10次。每组测量3个平行样品。

1.5.3 吸水能力评估

对干燥状态下的多孔支架称重,记录此时质量为m0;然后将多孔支架置于PBS溶液中,并在5、10、15、30、60 min后取出,每次取出时排净支架表面多余水分,并对其此时湿重进行测量记为m1;吸水率=(m1-m0)/m0×100%。在多次吸水能力测试中,样品在吸满水后和被压缩至体积的50%时进行湿重的测量,并循环5次。每组3个平行样品。

1.6 细胞接种

收集第2代兔耳软骨细胞制备成6×107个/mL的细胞悬液,通过移液枪均匀接种在消毒过的多孔支架材料上,接种后于37 ℃、5%CO2条件下孵育4 h,添加培养基后体外培养,每2 d换液1次。

1.7 细胞外基质的分泌

培养1、4和7 d后,用PBS冲洗细胞支架复合物,并在4 ℃、0.05%戊二醛中固定过夜。样品通过分级乙醇脱水和临界点干燥后,用SEM检测支架上生长附着的细胞和基质生成。

1.8 细胞活性评估

在1、4和7 d的培养后,按照制造商的说明书,使用活/死细胞染色评估支架上的种子细胞的活力,并用共聚焦显微镜检查。

1.9 支架的细胞毒性

为了测定多孔支架的细胞毒性,将软骨细胞以2×104个/mL的密度在浸出液(含10%胎牛血清的DMEM浸泡支架72 h的上清液)中进行接种,然后培养7 d。CCK-8实验按照制造商的说明书,每组测定5个平均光密度(D)值,每次实验重复3次。

1.10 再生软骨组织学检测

将细胞支架复合物植入裸鼠皮下体内培养4周、8周后取出,将标本以4%多聚甲醛固定48 h,常规脱水、透明,石蜡包埋并进行组织切片(厚度为5 μm),随后行H-E染色及番红O(safranin-O)染色,观察再生软骨组织的组织结构和细胞外基质的分泌及分布情况。然后用免疫组织化学的方法检测Ⅱ型胶原(collagen type-Ⅱ,COL-Ⅱ)的表达,观察软骨组织特异性细胞外基质的分泌和分布情况,进一步证明构建组织的软骨表型。

1.11 统计学分析

数据采用GraphPad Prism软件(Version 8.0,美国)进行统计学分析。定量资料以x±s表示,2组数据比较采用独立样本t检验,多组间比较采用单因素方差分析。P<0.05表示差异有统计学意义。

2 结果

2.1 软骨脱细胞效率评估

H-E染色结果显示,脱细胞样品仅保留细胞外基质成分,未见明显的细胞核存在(图1A)。DNA含量可以代表残留的细胞成分(图1B),ACM中的细胞成分(11.50±1.77)ng/mg明显低于原生软骨(216.40±8.88)ng/mg。测定ACM中GAG和胶原蛋白含量,验证细胞外基质的保存效果,保留率分别为57.19%和48.21%(图1C、D)。

图1

图1   软骨脱细胞效率评估

Note: A. H-E staining of decellularized cartilage (black arrows indicate the lumen-like structures remaining after decellularization). B. DNA content. C. Total GAG content. D. Collagen content. P=0.000, compared with the native group.

Fig1   Evaluation of cartilage decellularization efficiency


2.2 多孔支架的制备

本研究制备的多孔支架均依靠天然生物材料ACM和SF,2种物质富含蛋白成分,拥有大量的氨基、羟基基团,均能够与EGDE两端的环氧基团发生亲核反应,产生化学交联作用。此外,由于SF的β折叠作用会形成稳定的物理交联,从而形成双网络交联结构;并且在冰冻条件下,水溶剂被冻结成冰晶且在最后形成蜂窝状多孔结构。而ACM-SF分子在冷冻条件下逐渐相分离析出,并在交联剂和催化剂作用下形成稳定的交联结构(图2)。

图2

图2   冰冻条件下混合溶液中冰晶致孔及ACM-SF双网络交联机制

Fig2   Mechanism of ice crystal pore-forming and ACM-SF cross-linking in mixed solution under freezing conditions


2.3 不同组别ACM-SF支架的制备

将所有支架统一制备成直径6 mm、高6 mm大小的圆柱形。ACM制备的多孔支架由于缺乏SF的β折叠力学支撑作用,冻干后产生明显的收缩变形,难以维持原始形状,微孔结构疏松,孔径为(109.51±20.51)μm;ACM-SF组与SF组多孔支架形态保持良好,孔隙直径分别在(61.15±10.31)μm与(81.51± 12.16)μm(图3)。

图3

图3   不同组ACM-SF多孔支架的整体外观和SEM观察

Note: A. Gross appearances (above) and SEM images (below) of ACM, ACM-SF and SF porous stents. B. Pore size distribution of each group of stents. P=0.000, compared with the ACM-SF group; P=0.000, compared with the SF group.

Fig3   Gross appearances and SEM images of different groups of ACM-SF porous scaffolds


2.4 不同组别多孔支架的机械性能

通过与SF交联,ACM支架的抗压强度可以显著提高(图4A)。ACM、ACM-SF和SF的弹性模量分别为(2.94±0.03)kPa、(7.77±0.14)kPa和(13.19±0.17)kPa(图4B)。通过循环压缩实验可见,ACM-SF可以承受60%的压缩应变,释放压缩力后恢复原状(图4C),并且值得注意的是,ACM-SF在第1个循环后从第2到第10个循环强度恢复更加稳定,这表明ACM-SF具有良好的可恢复性(图4D)。

图4

图4   不同组别ACM-SF多孔支架力学分析

Note: A. Stress-strain curves of ACM, ACM-SF and SF stents in the wet state. B. Comparison of elastic modulus. C. Ten cycles of compression with a maximum strain of 60% for each group of stents in the wet state. D. Comparison of dynamic compressive strength at 30% strain for the 2nd‒10th cycles with the 1st compression strength. P=0.000, compared with the ACM-SF group; P=0.000, compared with the SF group.

Fig4   Mechanical analysis of ACM-SF porous scaffolds of different groups


各组多孔支架中,ACM-SF的机械性能、孔径、孔隙率更适宜软骨再生,因此选取ACM-SF进行进一步研究。

2.5 支架材料的吸水能力

ACM-SF支架与水接触约15 min内即可达到最大吸水率约1 900%(图5A)。此外,该支架显示出可逆的吸水能力(图5B)。通过50%的压缩应变挤压支架,大部分吸收的水分被挤出支架,当支架浸入水中后会再次吸水,并达到先前的吸收状态。

图5

图5   ACM-SF多孔支架的吸水能力

Note: A. Water absorption efficiency of ACM-SF scaffolds. B. Water absorption of the scaffold under different compressive strains (strain=0 and 50%) for multiple cycles.

Fig5   Water absorption capacity of ACM-SF porous scaffolds


2.6 ACM-SF支架生物相容性

SEM观察,软骨细胞能够在支架上快速黏附和增殖,并分泌出大量的细胞外基质填充在微孔结构中(图6A)。活/死细胞实验(图6A)显示活细胞(绿色)增殖明显快于细胞凋亡(红色),显示出良好的细胞活力。与上述结果一致的是,对支架浸提液的细胞毒性分析进一步验证了ACM-SF组的细胞增殖明显高于完全培养基的对照组(图6B),表明ACM-SF多孔支架对于软骨细胞没有毒性作用。

图6

图6   ACM-SF支架的生物相容性

Note: A. SEM images (above) and live-dead staining analysis (below) of chondrocytes after inoculation on ACM-SF porous scaffold for 1, 4 and 7 days (live and dead cells were stained green and red, respectively). C. Toxicity analysis of scaffold cytotoxicity. P=0.004, compared with the control group.

Fig6   Biocompatibility of ACM-SF scaffolds


2.7 再生软骨组织学分析

细胞支架复合物植入裸鼠体内后,随着体内培养时间的延长,逐渐形成更加成熟的再生软骨组织。组织学结构显示:在植入体内4周后,2组再生组织中均能观察到软骨细胞的腔隙结构和软骨特异性细胞外基质沉积,ACM-SF组支架中的软骨细胞分布更加均匀(图7A);与之相对的,SF组中基质间空隙部分较明显(图7B)。可见ACM成分对于软骨细胞有较强的亲和性。皮下植入8周后,组织学染色可见2组腔隙结构更加明显,Safranin-O和Ⅱ型胶原免疫组织化学的染色性更强(图7),表明均形成了成熟的软骨组织。然而进一步可以看到ACM-SF的支架已基本降解,而在SF组织可见到软骨组织间仍存留有少量尚未降解的支架成分。

图7

图7   体内培养后组织学观察

Note: A/B. H-E, safranin-O, and COL-Ⅱ immunohistochemical staining in regenerated cartilage tissues of ACM-SF (A) and SF (B) groups after 4 and 8 weeks of in vivo implantation.

Fig7   Histological observation after in vivo culture


3 讨论

软骨缺损的临床治疗是一项重大挑战13-15,因为目前的方法不能提供修复软骨缺损的理想移植物。组织工程为治疗各种软骨缺损提供了一种新方法,可用于在体外增殖过程中再生足够的自体活软骨组织,所需软骨细胞数少,创伤小16-18。其中,生物材料支架为细胞黏附、生长发育提供了合适的机械强度、空间和环境,是组织工程领域的重要组成部分19-20。然而,理想的细胞支架不应只提供生长空间和临时支撑。它还应具有良好的亲和力,长期保持稳定的形状,具有一定的营养物质交换能力以确保内部细胞的生长活力,最终满足临床应用中组织缺损和修复的实际需要4

脱细胞基质作为具有活性的组织再生支架材料,逐渐成为组织工程研究、应用的重要趋势。通过选用各种组织进行脱细胞处理所制备的脱细胞基质,能够达到仿生微环境的效果,并经既往研究验证,脱细胞基质仿生支架具有促进骨髓间充质干细胞定向分化的能力,有益于实现组织再生21-22。但是单独应用脱细胞基质材料很难塑形成为具有一定形状的多孔支架,限制了其进一步的应用23。本文报道了一种SF复合ACM仿生支架,脱细胞基质支架的力学强度得到增强,并且强大的吸水能力有助于支架内外的营养物质交换。采用物理和化学交联的方法合成了具有双网络结构的ACM-SF支架。EDGE两端的环氧基不仅能与ACM上的氨基和羟基结合,还能与SF的氨基和羟基反应24,形成交联网络,此外SF还具有由β-折叠物理交联构成的网络。利用这种策略,许多其他蛋白质,如胶原蛋白或类似的脱细胞基质组分,也可以引入到双交联网络系统,以建立具有生物活性的多孔支架。冰模板使高孔隙率的多孔支架形成相互连接的蜂窝状结构,有利于细胞的黏附、生长和存活。并且,微孔结构可以通过冰晶大小和溶质浓度进行调控,尺寸范围为数十到数百微米725

ACM具有良好的生物相容性,但其机械强度不足;SF主要由结晶形成的分子链与β折叠相互作用而起支撑作用。本研究通过2种材料的交联结合可以提高支架的生物活性和力学强度。由于复合支架中双交联网络结构赋予了ACM-SF理想的弹性和疲劳耐久性,使其在体外培养或体内植入的再生过程中,能够承受多次变形并保持原始结构。并且,ACM-SF复合支架具有优异的亲水性,在湿态下表现出极高的吸水特性,这能为气体和营养交换以及废物代谢提供途径,从而对组织发育起着关键的作用。此外,由SF和ACM形成的双网络多孔结构可以更好地为细胞生长和软骨生成提供支持。相当多的研究表明,改变支架的结构特征(例如复合网络结构)可能是维持软骨表型的可行策略,甚至可能通过增加细胞外基质的沉积来促进软骨的生成。ACM对诱导软骨发育及软骨再生的作用可能更具有决定性,这是因为ACM不仅包含结构生物大分子,如GAG、胶原蛋白,还包含多种生物活性因子,例如转化生长因子-β1(TGF-β1)、骨形态发生蛋白2(BMP-2)以及胰岛素样生长因子(IGF)等,其全面的生物学功能极大地促进了细胞增殖和软骨生成。

综上所述,ACM-SF可制成适宜软骨再生的三维多孔支架,能够有效保证组织工程软骨的体内再生。然而,支架材料的仿生成分含量与实际微环境仍有差异,需要进一步优化SF与ACM间的比例及浓度,使其中活性物质含量更接近生理水平;尚需要优化各项制备参数,使支架材料的力学性能能够得到进一步提升,达到满足多类型软骨修复的强度需求。目前ACM对于软骨细胞的调控机制尚不明确,我们将深入探究相关作用机制及信号通路原理,阐明ACM作用效果,为ACM-SF三维多孔支架的广泛应用奠定基础。

作者贡献声明

周广东、雷东负责课题设计及指导;王千懿负责论文写作;冉欣悦、张沛灵参与实验设计;王千懿、慈政参与实验操作;周广东、雷东参与论文修改。所有作者均阅读并同意了最终稿件的提交。

The study was designed by ZHOU Guangdong and LEI Dong. The manuscript was drafted by WANG Qianyi. The experiment was designed by RAN Xinyue and ZHANG Peiling. The experiment was operated by WANG Qianyi and CI Zheng. The manuscript was revised by ZHOU Guangdong and LEI Dong. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

WIGGENHAUSER P S, SCHWARZ S, KOERBER L, et al. Addition of decellularized extracellular matrix of porcine nasal cartilage improves cartilage regenerative capacities of PCL-based scaffolds in vitro[J]. J Mater Sci Mater Med, 2019, 30(11): 121.

[本文引用: 1]

HUA Y J, HUO Y Y, BAI B S, et al. Fabrication of biphasic cartilage-bone integrated scaffolds based on tissue-specific photo-crosslinkable acellular matrix hydrogels[J]. Mater Today Bio, 2022, 17: 100489.

LIU J, WANG X Y, LU G G, et al. Bionic cartilage acellular matrix microspheres as a scaffold for engineering cartilage[J]. J Mater Chem B, 2019, 7(4): 640-650.

[本文引用: 1]

JIA L T, HUA Y J, ZENG J S, et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix[J]. Bioact Mater, 2022, 16: 66-81.

[本文引用: 2]

GONG M, SUN J C, LIU G M, et al. Graphene oxide-modified 3D acellular cartilage extracellular matrix scaffold for cartilage regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119: 111603.

[本文引用: 1]

LU Q, ZHU H S, ZHANG C C, et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics[J]. Biomacromolecules, 2012, 13(3): 826-832.

[本文引用: 1]

MAO Z N, BI X W, YE F, et al. Controlled cryogelation and catalytic cross-linking yields highly elastic and robust silk fibroin scaffolds[J]. ACS Biomater Sci Eng, 2020, 6(8): 4512-4522.

[本文引用: 2]

MORI H, TSUKADA M. New silk protein: modification of silk protein by gene engineering for production of biomaterials[J]. Rev Mol Biotechnol, 2000, 74(2): 95-103.

[本文引用: 1]

SETAYESHMEHR M, ESFANDIARI E, RAFIEINIA M, et al. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering[J]. Tissue Eng Part B Rev, 2019, 25(3): 202-224.

[本文引用: 1]

CRAPO P M, GILBERT T W, BADYLAK S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243.

[本文引用: 1]

LAI Y X, LI Y, CAO H J, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials, 2019, 197: 207-219.

[本文引用: 1]

贾立涛, 姚琳, 刘延群, 等. 软骨脱细胞基质仿生支架体外构建组织工程软骨[J]. 组织工程与重建外科杂志, 2019, 15(4): 222-226, 244.

[本文引用: 1]

JIA L T, YAO L, LIU Y Q, et al. Cartilage decellularized matrix bionic scaffold for in vitro construction of tissue-engineered cartilage[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2019, 15(4): 222-226, 244.

[本文引用: 1]

GOMEZ M, WITTIG O, DIAZ-SOLANO D, et al. Mesenchymal stromal cell transplantation induces regeneration of large and full-thickness cartilage defect of the temporomandibular joint[J]. Cartilage, 2021, 13(1_suppl): 1814S-1821S.

[本文引用: 1]

MARDONES R, GIAI VIA A, PIPINO G, et al. BM-MSCs differentiated to chondrocytes for treatment of full-thickness cartilage defect of the knee[J]. J Orthop Surg Res, 2020, 15(1): 455.

PATTAPPA G, KRUECKEL J, SCHEWIOR R, et al. Physioxia expanded bone marrow derived mesenchymal stem cells have improved cartilage repair in an early osteoarthritic focal defect model[J]. Biology (Basel), 2020, 9(8): 230.

[本文引用: 1]

ZHENG R, DUAN H C, XUE J X, et al. The influence of gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration[J]. Biomaterials, 2014, 35(1): 152-164.

[本文引用: 1]

HE A J, XIA H T, XIAO K Y, et al. Cell yield, chondrogenic potential, and regenerated cartilage type of chondrocytes derived from ear, nasoseptal, and costal cartilage[J]. J Tissue Eng Regen Med, 2018, 12(4): 1123-1132.

ZHOU G D, JIANG H Y, YIN Z Q, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction[J]. EBioMedicine, 2018, 28: 287-302.

[本文引用: 1]

REID J A, DWYER K D, SCHMITT P R, et al. Architected fibrous scaffolds for engineering anisotropic tissues[J]. Biofabrication, 2021, 13(4): 234.

[本文引用: 1]

JU X J, LIU X Z, ZHANG Y, et al. A photo-crosslinked proteinogenic hydrogel enabling self-recruitment of endogenous TGF-β1 for cartilage regeneration[J]. Smart Mater Med, 2022, 3: 85-93.

[本文引用: 1]

CHEN Y C, CHEN R N, JHAN H J, et al. Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering[J]. Tissue Eng Part C Methods, 2015, 21(9): 971-986.

[本文引用: 1]

张沛灵, 慈政, 贾立涛, 等. 软骨脱细胞基质仿生支架的制备及其对骨髓基质干细胞成软骨分化的影响[J]. 组织工程与重建外科, 2021, 17(1): 19-24.

[本文引用: 1]

ZHANG P L, CI Z, JIA L T, et al. Preparation of cartilage decellularized matrix bionic scaffold and its effect on chondrogenic differentiation of bone marrow stromal stem cells[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2021, 17(1): 19-24.

[本文引用: 1]

JIA L T, ZHANG Y, YAO L, et al. Regeneration of human-ear-shaped cartilage with acellular cartilage matrix-based biomimetic scaffolds[J]. Appl Mater Today, 2020, 20: 100639.

[本文引用: 1]

AK F, OZTOPRAK Z, KARAKUTUK I, et al. Macroporous silk fibroin cryogels[J]. Biomacromolecules, 2013, 14(3): 719-727.

[本文引用: 1]

MAO Z N, BI X W, YE F, et al. The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering[J]. Int J Biol Macromol, 2021, 182: 1268-1277.

[本文引用: 1]

/