[1]
The Lancet Diabetes Endocrinology. Obesity in China: time to act[J]. Lancet Diabetes Endocrinol, 2021, 9(7): 407.
[本文引用: 1]
[2]
WANG L M, PENG W, ZHAO Z P, et al. Prevalence and treatment of diabetes in China, 2013‒2018[J]. JAMA, 2021, 326(24): 2498-2506.
[本文引用: 1]
[3]
BOESVELDT S, DE GRAAF K. The differential role of smell and taste for eating behavior[J]. Perception, 2017, 46(3/4): 307-319.
[本文引用: 1]
[4]
DOTY R L. Olfactory dysfunction in Parkinson disease[J]. Nat Rev Neurol, 2012, 8(6): 329-339.
[本文引用: 3]
[5]
LAFAILLE-MAGNAN M E, POIRIER J, ETIENNE P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk[J]. Neurology, 2017, 89(4): 327-335.
[本文引用: 2]
[6]
ZHANG Z, ZHANG B, WANG X, et al. Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: insights from clinical and functional neuroimaging studies[J]. Diabetes Care, 2019, 42(7): 1274-1283.
[本文引用: 2]
[7]
FIRESTEIN S. How the olfactory system makes sense of scents[J]. Nature, 2001, 413(6852): 211-218.
[本文引用: 1]
[8]
THIEBAUD N, JOHNSON M C, BUTLER J L, et al. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning[J]. J Neurosci, 2014, 34(20): 6970-6984.
[本文引用: 1]
[9]
CAMPOLO J, CORRADI E, RIZZARDI A, et al. Correlates of olfactory impairment in middle-aged non-diabetic Caucasian subjects with stage Ⅰ‒Ⅱ obesity[J]. Eur Arch Otorhinolaryngol, 2021, 278(6): 2047-2054.
[本文引用: 1]
[10]
PENG M, COUTTS D, WANG T, et al. Systematic review of olfactory shifts related to obesity[J]. Obes Rev, 2019, 20(2): 325-338.
[本文引用: 1]
[11]
VELLUZZI F, DELEDDA A, ONIDA M, et al. Relationship between olfactory function and BMI in normal weight healthy subjects and patients with overweight or obesity[J]. Nutrients, 2022, 14(6): 1262.
[本文引用: 1]
[12]
HOLINSKI F, MENENAKOS C, HABER G, et al. Olfactory and gustatory function after bariatric surgery[J]. Obes Surg, 2015, 25(12): 2314-2320.
[本文引用: 3]
[13]
HANCI D, ALTUN H, ALTUN H, et al. Laparoscopic sleeve gastrectomy improves olfaction sensitivity in morbidly obese patients[J]. Obes Surg, 2016, 26(3): 558-562.
[本文引用: 2]
[14]
MAKARONIDIS J M, NEILSON S, CHEUNG W H, et al. Reported appetite, taste and smell changes following Roux-en-Y gastric bypass and sleeve gastrectomy: effect of gender, type 2 diabetes and relationship to post-operative weight loss[J]. Appetite, 2016, 107: 93-105.
[15]
ZERRWECK C, ZURITA L, ÁLVAREZ G, et al. Taste and olfactory changes following laparoscopic gastric bypass and sleeve gastrectomy[J]. Obes Surg, 2016, 26(6): 1296-1302.
[16]
ZERRWECK C, GALLARDO V C, CALLEJA C, et al. Gross olfaction before and after laparoscopic gastric bypass[J]. Obes Surg, 2017, 27(11): 2988-2992.
[本文引用: 2]
[17]
GUYOT E, DOUGKAS A, ROBERT M, et al. Food preferences and their perceived changes before and after bariatric surgery: a cross-sectional study[J]. Obes Surg, 2021, 31(7): 3075-3082.
[本文引用: 1]
[18]
RIERA C E, TSAOUSIDOU E, HALLORAN J, et al. The sense of smell impacts metabolic health and obesity[J]. Cell Metab, 2017, 26(1): 198-211.e5.
[本文引用: 1]
[19]
STAFFORD L D, WHITTLE A. Obese individuals have higher preference and sensitivity to odor of chocolate[J]. Chem Senses, 2015, 40(4): 279-284.
[本文引用: 1]
[20]
KINDLEYSIDES S, BECK K L, WALSH D C I, et al. Fat sensation: fatty acid taste and olfaction sensitivity and the link with disinhibited eating behaviour[J]. Nutrients, 2017, 9(8): 879.
[本文引用: 1]
[21]
POESSEL M, MORYS F, BREUER N, et al. Brain response to food odors is not associated with body mass index and obesity-related metabolic health measures[J]. Appetite, 2022, 168: 105774.
[本文引用: 1]
[22]
LE FLOCH J P, LE LIÈVRE G, LABROUE M, et al. Smell dysfunction and related factors in diabetic patients[J]. Diabetes Care, 1993, 16(6): 934-937.
[本文引用: 2]
[23]
WEINSTOCK R S, WRIGHT H N, SMITH D U. Olfactory dysfunction in diabetes mellitus[J]. Physiol Behav, 1993, 53(1): 17-21.
[本文引用: 2]
[24]
CATAMO E, TORNESE G, CONCAS M P, et al. Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls[J]. Nutr Metab Cardiovasc Dis, 2021, 31(1): 193-200.
[本文引用: 1]
[25]
RASMUSSEN V F, VESTERGAARD E T, HEJLESEN O, et al. Prevalence of taste and smell impairment in adults with diabetes: a cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES)[J]. Prim Care Diabetes, 2018, 12(5): 453-459.
[本文引用: 1]
[26]
KAYA K S, MAZı E E, DEMIR S T, et al. Relationship between progression of type 2 diabetes mellitus and olfactory function[J]. Am J Otolaryngol, 2020, 41(2): 102365.
[本文引用: 1]
[27]
MOZZANICA F, FERRULLI A, VUJOSEVIC S, et al. Olfactory disfunction and diabetic complications in type 2 diabetic patients: a pilot study[J]. Endocrine, 2022, 75(3): 760-767.
[本文引用: 1]
[28]
LI J, LI M Y, ZHANG J J, et al. Associations between taste and smell alterations and diabetes-related comorbidities among US adults: the National Health and Nutrition Examination Surveys 2011‒2014[J]. Acta Diabetol, 2022, 59(3): 429-433.
[本文引用: 1]
[29]
BOREL A L. Sleep apnea and sleep habits: relationships with metabolic syndrome[J]. Nutrients, 2019, 11(11): 2628.
[本文引用: 1]
[30]
MAGLIULO G, DE VINCENTIIS M, IANNELLA G, et al. Olfactory evaluation in obstructive sleep apnoea patients[J]. Acta Otorhinolaryngol Ital, 2018, 38(4): 338-345.
[本文引用: 1]
[31]
ARNOLD S E, ARVANITAKIS Z, MACAULEY-RAMBACH S L, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181.
[本文引用: 1]
[32]
BOSCO D, PLASTINO M, CRISTIANO D, et al. Dementia is associated with insulin resistance in patients with Parkinson′s disease[J]. J Neurol Sci, 2012, 315(1/2): 39-43.
[本文引用: 1]
[33]
DE LA MONTE S M, WANDS J R. Alzheimer′s disease is type 3 diabetes: evidence reviewed[J]. J Diabetes Sci Technol, 2008, 2(6): 1101-1113.
[本文引用: 1]
[34]
PONSEN M M, STOFFERS D, BOOIJ J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson′s disease[J]. Ann Neurol, 2004, 56(2): 173-181.
[本文引用: 1]
[35]
TAHERI S, MAHMOODI M, OPACKA-JUFFRY J, et al. Distribution and quantification of immunoreactive orexin A in rat tissues[J]. FEBS Lett, 1999, 457(1): 157-161.
[本文引用: 1]
[36]
ZAGHLOUL H, PALLAYOVA M, AL-NUAIMI O, et al. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions[J]. Diabet Med, 2018, 35(1): 41-52.
[本文引用: 1]
[37]
KOSSE C, GONZALEZ A, BURDAKOV D. Predictive models of glucose control: roles for glucose-sensing neurones[J]. Acta Physiol, 2015, 213(1): 7-18.
[本文引用: 1]
[38]
POESSEL M, FREIHERR J, WIENCKE K, et al. Insulin resistance is associated with reduced food odor sensitivity across a wide range of body weights[J]. Nutrients, 2020, 12(8): 2201.
[本文引用: 1]
[39]
FIGLEWICZ D P, IKEDA H, HUNT T R, et al. Brain insulin binding is decreased in Wistar Kyoto rats carrying the 'fa' gene[J]. Peptides, 1986, 7(1): 61-65.
[本文引用: 1]
[40]
EDWIN THANARAJAH S, HOFFSTALL V, RIGOUX L, et al. The role of insulin sensitivity and intranasally applied insulin on olfactory perception[J]. Sci Rep, 2019, 9(1): 7222.
[本文引用: 1]
[41]
MURATA K, KINOSHITA T, FUKAZAWA Y, et al. GABAergic neurons in the olfactory cortex projecting to the lateral hypothalamus in mice[J]. Sci Rep, 2019, 9(1): 7132.
[本文引用: 1]
[42]
VÁRKONYI T, KÖREI A, PUTZ Z, et al. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy?[J]. Angiology, 2014, 65(10): 857-860.
[本文引用: 1]
[43]
DUDA-SOBCZAK A, ARASZKIEWICZ A, URBAS M, et al. Impaired olfactory function is related to the presence of neuropathy in adults with type 1 diabetes[J]. Diab Vasc Dis Res, 2017, 14(2): 139-143.
[本文引用: 1]
[44]
PALOUZIER-PAULIGNAN B, LACROIX M C, AIMÉ P, et al. Olfaction under metabolic influences[J]. Chem Senses, 2012, 37(9): 769-797.
[本文引用: 1]
[45]
FERNANDEZ-GARCIA J C, ALCAIDE J, SANTIAGO-FERNANDEZ C, et al. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity[J]. PLoS One, 2017, 12(2): e0171204.
[本文引用: 1]
[46]
UYGUN B, KIYICI S, OZMEN S, et al. The association between olfaction and taste functions with serum ghrelin and leptin levels in obese women[J]. Metab Syndr Relat Disord, 2019, 17(9): 452-457.
[本文引用: 2]
[47]
FERNÁNDEZ-ARANDA F, AGÜERA Z, FERNÁNDEZ-GARCÍA J C, et al. Smell-taste dysfunctions in extreme weight/eating conditions: analysis of hormonal and psychological interactions[J]. Endocrine, 2016, 51(2): 256-267.
[本文引用: 1]
[48]
MUTLU A S, GAO S M, ZHANG H N, et al. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans [J]. Nat Commun, 2020, 11(1): 1450.
[本文引用: 1]
[49]
FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71.
[本文引用: 1]
[50]
WONG A C N, WANG Q P, MORIMOTO J, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila [J]. Curr Biol, 2017, 27(15): 2397-2404.e4.
[本文引用: 1]
[51]
FRANÇOIS A, GREBERT D, RHIMI M, et al. Olfactory epithelium changes in germfree mice[J]. Sci Rep, 2016, 6: 24687.
[本文引用: 1]
[52]
NAUDON L, FRANÇOIS A, MARIADASSOU M, et al. First step of odorant detection in the olfactory epithelium and olfactory preferences differ according to the microbiota profile in mice[J]. Behav Brain Res, 2020, 384: 112549.
[本文引用: 1]
[53]
O'DONNELL M P, FOX B W, CHAO P H, et al. A neurotransmitter produced by gut bacteria modulates host sensory behaviour[J]. Nature, 2020, 583(7816): 415-420.
[本文引用: 1]
[54]
CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
[本文引用: 1]
[55]
BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604.
[本文引用: 1]
[56]
TANAKA H, GOURLEY D D, DEKHTYAR M, et al. Cognition, brain structure, and brain function in individuals with obesity and related disorders[J]. Curr Obes Rep, 2020, 9(4): 544-549.
[本文引用: 1]
[57]
JUNG H J, SHIN I S, LEE J E. Olfactory function in mild cognitive impairment and Alzheimer′s disease: a meta-analysis[J]. Laryngoscope, 2019, 129(2): 362-369.
[本文引用: 1]
[58]
SANKE H, MITA T, YOSHII H, et al. Relationship between olfactory dysfunction and cognitive impairment in elderly patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2014, 106(3): 465-473.
[本文引用: 1]
[59]
YULUG B, SAATCI O, IŞIKLAR A, et al. The association between HbA1c levels, olfactory memory and cognition in normal, pre-diabetic and diabetic persons[J]. Endocr Metab Immune Disord Drug Targets, 2020, 20(2): 198-212.
[本文引用: 1]
[60]
SANKE H, MITA T, YOSHII H, et al. Olfactory dysfunction predicts the development of dementia in older patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2021, 174: 108740.
[本文引用: 1]
[61]
MARTINS I V A, RIVERS-AUTY J, ALLAN S M, et al. Mitochondrial abnormalities and synaptic loss underlie memory deficits seen in mouse models of obesity and Alzheimer′s disease[J]. J Alzheimers Dis, 2017, 55(3): 915-932.
[本文引用: 1]
1
... 代谢性疾病,如肥胖、2型糖尿病和代谢综合征,是一组由能量代谢异常引起的疾病,通常涉及身体的多个系统,由遗传倾向和环境因素共同驱动.在全球的许多国家,肥胖和糖尿病的患病率逐年上升;根据世界卫生组织的数据,自1975至2021年世界肥胖人数已增长了近2倍;随着经济的快速增长,中国的超重肥胖率及糖尿病的患病率迅速上升[1 -2 ] . ...
1
... 代谢性疾病,如肥胖、2型糖尿病和代谢综合征,是一组由能量代谢异常引起的疾病,通常涉及身体的多个系统,由遗传倾向和环境因素共同驱动.在全球的许多国家,肥胖和糖尿病的患病率逐年上升;根据世界卫生组织的数据,自1975至2021年世界肥胖人数已增长了近2倍;随着经济的快速增长,中国的超重肥胖率及糖尿病的患病率迅速上升[1 -2 ] . ...
1
... 嗅觉系统连接了感觉处理和代谢,除了检测和识别食物气味,还是许多负责调节摄食行为的激素和营养物质的传感器.一些疾病以及正常的衰老都会导致嗅觉的减退或完全丧失[3 ] ,然而,关于代谢性疾病对嗅脑区域和嗅觉处理影响的研究有限,代谢性疾病所伴随的嗅觉改变的机制尚不明晰.此外,代谢性疾病患者发生认知障碍的风险增高,而嗅觉改变是认知障碍的前驱临床症状[4 -6 ] .本文归纳了评估代谢性疾病嗅觉变化的相关研究,对代谢性疾病引起嗅觉变化的已知机制进行综述,并就嗅觉障碍对代谢性疾病导致的认知障碍的预警作用进行了概述与展望. ...
3
... 嗅觉系统连接了感觉处理和代谢,除了检测和识别食物气味,还是许多负责调节摄食行为的激素和营养物质的传感器.一些疾病以及正常的衰老都会导致嗅觉的减退或完全丧失[3 ] ,然而,关于代谢性疾病对嗅脑区域和嗅觉处理影响的研究有限,代谢性疾病所伴随的嗅觉改变的机制尚不明晰.此外,代谢性疾病患者发生认知障碍的风险增高,而嗅觉改变是认知障碍的前驱临床症状[4 -6 ] .本文归纳了评估代谢性疾病嗅觉变化的相关研究,对代谢性疾病引起嗅觉变化的已知机制进行综述,并就嗅觉障碍对代谢性疾病导致的认知障碍的预警作用进行了概述与展望. ...
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
2
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
2
... 嗅觉系统连接了感觉处理和代谢,除了检测和识别食物气味,还是许多负责调节摄食行为的激素和营养物质的传感器.一些疾病以及正常的衰老都会导致嗅觉的减退或完全丧失[3 ] ,然而,关于代谢性疾病对嗅脑区域和嗅觉处理影响的研究有限,代谢性疾病所伴随的嗅觉改变的机制尚不明晰.此外,代谢性疾病患者发生认知障碍的风险增高,而嗅觉改变是认知障碍的前驱临床症状[4 -6 ] .本文归纳了评估代谢性疾病嗅觉变化的相关研究,对代谢性疾病引起嗅觉变化的已知机制进行综述,并就嗅觉障碍对代谢性疾病导致的认知障碍的预警作用进行了概述与展望. ...
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与嗅觉功能的变化有关,包括对气味剂的敏感性下降和气味感知的改变[7 ] .THIEBAUD等[8 ] 发现,接受了高脂饮食后小鼠的嗅觉感觉神经元及其轴突投射显著减少,伴随着嗅电图振幅的降低,嗅觉神经元和相关神经环路的变化与神经元增殖和正常细胞凋亡有关,并且当肥胖小鼠不再进行高脂饲料喂养并恢复正常的体质量和空腹血糖后,嗅觉功能障碍仍然存在.一些在人群队列中开展的研究通过嗅笔(Sniffin′ Sticks)对嗅觉能力进行了评估,发现与非肥胖者相比,肥胖者的嗅觉功能降低[9 -10 ] .VELLUZZI等[11 ] 对70名来自意大利的肥胖患者进行了嗅觉阈值、嗅觉辨别和嗅觉识别测试,发现体质量指数(body mass index,BMI)与肥胖者的嗅觉得分之间存在负相关. ...
1
... 肥胖与嗅觉功能的变化有关,包括对气味剂的敏感性下降和气味感知的改变[7 ] .THIEBAUD等[8 ] 发现,接受了高脂饮食后小鼠的嗅觉感觉神经元及其轴突投射显著减少,伴随着嗅电图振幅的降低,嗅觉神经元和相关神经环路的变化与神经元增殖和正常细胞凋亡有关,并且当肥胖小鼠不再进行高脂饲料喂养并恢复正常的体质量和空腹血糖后,嗅觉功能障碍仍然存在.一些在人群队列中开展的研究通过嗅笔(Sniffin′ Sticks)对嗅觉能力进行了评估,发现与非肥胖者相比,肥胖者的嗅觉功能降低[9 -10 ] .VELLUZZI等[11 ] 对70名来自意大利的肥胖患者进行了嗅觉阈值、嗅觉辨别和嗅觉识别测试,发现体质量指数(body mass index,BMI)与肥胖者的嗅觉得分之间存在负相关. ...
1
... 肥胖与嗅觉功能的变化有关,包括对气味剂的敏感性下降和气味感知的改变[7 ] .THIEBAUD等[8 ] 发现,接受了高脂饮食后小鼠的嗅觉感觉神经元及其轴突投射显著减少,伴随着嗅电图振幅的降低,嗅觉神经元和相关神经环路的变化与神经元增殖和正常细胞凋亡有关,并且当肥胖小鼠不再进行高脂饲料喂养并恢复正常的体质量和空腹血糖后,嗅觉功能障碍仍然存在.一些在人群队列中开展的研究通过嗅笔(Sniffin′ Sticks)对嗅觉能力进行了评估,发现与非肥胖者相比,肥胖者的嗅觉功能降低[9 -10 ] .VELLUZZI等[11 ] 对70名来自意大利的肥胖患者进行了嗅觉阈值、嗅觉辨别和嗅觉识别测试,发现体质量指数(body mass index,BMI)与肥胖者的嗅觉得分之间存在负相关. ...
1
... 肥胖与嗅觉功能的变化有关,包括对气味剂的敏感性下降和气味感知的改变[7 ] .THIEBAUD等[8 ] 发现,接受了高脂饮食后小鼠的嗅觉感觉神经元及其轴突投射显著减少,伴随着嗅电图振幅的降低,嗅觉神经元和相关神经环路的变化与神经元增殖和正常细胞凋亡有关,并且当肥胖小鼠不再进行高脂饲料喂养并恢复正常的体质量和空腹血糖后,嗅觉功能障碍仍然存在.一些在人群队列中开展的研究通过嗅笔(Sniffin′ Sticks)对嗅觉能力进行了评估,发现与非肥胖者相比,肥胖者的嗅觉功能降低[9 -10 ] .VELLUZZI等[11 ] 对70名来自意大利的肥胖患者进行了嗅觉阈值、嗅觉辨别和嗅觉识别测试,发现体质量指数(body mass index,BMI)与肥胖者的嗅觉得分之间存在负相关. ...
1
... 肥胖与嗅觉功能的变化有关,包括对气味剂的敏感性下降和气味感知的改变[7 ] .THIEBAUD等[8 ] 发现,接受了高脂饮食后小鼠的嗅觉感觉神经元及其轴突投射显著减少,伴随着嗅电图振幅的降低,嗅觉神经元和相关神经环路的变化与神经元增殖和正常细胞凋亡有关,并且当肥胖小鼠不再进行高脂饲料喂养并恢复正常的体质量和空腹血糖后,嗅觉功能障碍仍然存在.一些在人群队列中开展的研究通过嗅笔(Sniffin′ Sticks)对嗅觉能力进行了评估,发现与非肥胖者相比,肥胖者的嗅觉功能降低[9 -10 ] .VELLUZZI等[11 ] 对70名来自意大利的肥胖患者进行了嗅觉阈值、嗅觉辨别和嗅觉识别测试,发现体质量指数(body mass index,BMI)与肥胖者的嗅觉得分之间存在负相关. ...
3
... 减重手术是治疗严重肥胖和相关并发症的最有效的方法之一.接受减重手术后,患者通常会发生嗅觉能力的变化.袖状胃切除术(sleeve gastrectomy,SG)与胃旁路手术(gastric bypass,GBP)是2种常见的减重手术方式,有研究[12 -16 ] 表明这2种减重手术后患者均有嗅觉的变化.ZERRWECK等[16 ] 对接受了GBP的肥胖患者进行了嗅觉测试,发现术后6个月时肥胖患者的嗅觉得分有所改善.针对SG的研究[12 -13 ] 表明,减重术后嗅觉功能显著改善.HOLINSKI等[12 ] 对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
... [12 -13 ]表明,减重术后嗅觉功能显著改善.HOLINSKI等[12 ] 对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
... [12 ]对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
2
... 减重手术是治疗严重肥胖和相关并发症的最有效的方法之一.接受减重手术后,患者通常会发生嗅觉能力的变化.袖状胃切除术(sleeve gastrectomy,SG)与胃旁路手术(gastric bypass,GBP)是2种常见的减重手术方式,有研究[12 -16 ] 表明这2种减重手术后患者均有嗅觉的变化.ZERRWECK等[16 ] 对接受了GBP的肥胖患者进行了嗅觉测试,发现术后6个月时肥胖患者的嗅觉得分有所改善.针对SG的研究[12 -13 ] 表明,减重术后嗅觉功能显著改善.HOLINSKI等[12 ] 对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
... [13 ]发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
2
... 减重手术是治疗严重肥胖和相关并发症的最有效的方法之一.接受减重手术后,患者通常会发生嗅觉能力的变化.袖状胃切除术(sleeve gastrectomy,SG)与胃旁路手术(gastric bypass,GBP)是2种常见的减重手术方式,有研究[12 -16 ] 表明这2种减重手术后患者均有嗅觉的变化.ZERRWECK等[16 ] 对接受了GBP的肥胖患者进行了嗅觉测试,发现术后6个月时肥胖患者的嗅觉得分有所改善.针对SG的研究[12 -13 ] 表明,减重术后嗅觉功能显著改善.HOLINSKI等[12 ] 对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
... [16 ]对接受了GBP的肥胖患者进行了嗅觉测试,发现术后6个月时肥胖患者的嗅觉得分有所改善.针对SG的研究[12 -13 ] 表明,减重术后嗅觉功能显著改善.HOLINSKI等[12 ] 对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
1
... 减重手术是治疗严重肥胖和相关并发症的最有效的方法之一.接受减重手术后,患者通常会发生嗅觉能力的变化.袖状胃切除术(sleeve gastrectomy,SG)与胃旁路手术(gastric bypass,GBP)是2种常见的减重手术方式,有研究[12 -16 ] 表明这2种减重手术后患者均有嗅觉的变化.ZERRWECK等[16 ] 对接受了GBP的肥胖患者进行了嗅觉测试,发现术后6个月时肥胖患者的嗅觉得分有所改善.针对SG的研究[12 -13 ] 表明,减重术后嗅觉功能显著改善.HOLINSKI等[12 ] 对接受了SG的患者进行了嗅觉评估,发现患者的气味辨别力相较于术前有显著改善,但气味敏感性和识别能力无显著变化.HANCI等[13 ] 发现接受了SG治疗的患者的气味敏感性、辨别和识别能力均有显著改善.研究[17 ] 也表明嗅觉改变可作为减重手术成功与否的预测指标. ...
1
... 嗅觉与代谢之间存在着相互影响的关系.一方面,嗅觉能力会受到营养状况的影响;另一方面,嗅觉还会参与食物摄入、能量消耗和脂质代谢的调节.在调节能量摄入的因素中,气味是诱导食物摄入的重要外部信号,通常被用来评估食物的适口性和摄食选择.嗅觉障碍会对体质量产生怎样的影响仍是一个悬而未决的问题.动物研究[18 ] 发现,消融嗅觉感觉神经元(olfactory sensory neuron,OSN)的小鼠相较于正常小鼠,接受了高脂饮食后的肥胖程度降低,并伴有产热增加,机制可能涉及胰岛素样生长因子1(insulin-like growth factor-1,IGF-1),在OSN小鼠中阻断IGF-1信号会导致肥胖和胰岛素抵抗增加.然而,STAFFORD等[19 ] 发现肥胖者对于高能量食物例如巧克力有关的气味表现出更高的敏感度和偏好.对脂肪的味道、气味和质地的感知会影响对食物的偏好,从而改变饮食摄入量和饮食行为,影响长期健康.KINDLEYSIDES等[20 ] 发现人们对油酸的味觉敏感度和嗅觉敏感度存在相关性,坚果类食物的饮食摄入量与油酸的嗅觉敏感度呈正相关.POESSEL等[21 ] 利用功能磁共振探索了正常体质量人群与超重肥胖患者在闻到不同热量的食物气味时的潜在神经机制,发现对食物气味的嗅觉感知与内嗅皮层、梨状皮质、脑岛、海马体和杏仁核的大脑活动有关,同时这些神经反应与肥胖状况、代谢因素无关,表明对食物气味的处理可能取决于体质量状况和代谢相关指标以外的因素.嗅觉功能改变和肥胖之间关系的确切机制尚未完全清楚,然而,嗅觉功能的改变可能会影响食物摄入和偏好,导致饮食行为和体质量的改变.嗅觉减退的人可能会吃更多的食物,以补偿他们感知食物的嗅觉能力.嗅觉变化可能会影响肥胖的发展,这需要进一步研究以充分了解其中的机制. ...
1
... 嗅觉与代谢之间存在着相互影响的关系.一方面,嗅觉能力会受到营养状况的影响;另一方面,嗅觉还会参与食物摄入、能量消耗和脂质代谢的调节.在调节能量摄入的因素中,气味是诱导食物摄入的重要外部信号,通常被用来评估食物的适口性和摄食选择.嗅觉障碍会对体质量产生怎样的影响仍是一个悬而未决的问题.动物研究[18 ] 发现,消融嗅觉感觉神经元(olfactory sensory neuron,OSN)的小鼠相较于正常小鼠,接受了高脂饮食后的肥胖程度降低,并伴有产热增加,机制可能涉及胰岛素样生长因子1(insulin-like growth factor-1,IGF-1),在OSN小鼠中阻断IGF-1信号会导致肥胖和胰岛素抵抗增加.然而,STAFFORD等[19 ] 发现肥胖者对于高能量食物例如巧克力有关的气味表现出更高的敏感度和偏好.对脂肪的味道、气味和质地的感知会影响对食物的偏好,从而改变饮食摄入量和饮食行为,影响长期健康.KINDLEYSIDES等[20 ] 发现人们对油酸的味觉敏感度和嗅觉敏感度存在相关性,坚果类食物的饮食摄入量与油酸的嗅觉敏感度呈正相关.POESSEL等[21 ] 利用功能磁共振探索了正常体质量人群与超重肥胖患者在闻到不同热量的食物气味时的潜在神经机制,发现对食物气味的嗅觉感知与内嗅皮层、梨状皮质、脑岛、海马体和杏仁核的大脑活动有关,同时这些神经反应与肥胖状况、代谢因素无关,表明对食物气味的处理可能取决于体质量状况和代谢相关指标以外的因素.嗅觉功能改变和肥胖之间关系的确切机制尚未完全清楚,然而,嗅觉功能的改变可能会影响食物摄入和偏好,导致饮食行为和体质量的改变.嗅觉减退的人可能会吃更多的食物,以补偿他们感知食物的嗅觉能力.嗅觉变化可能会影响肥胖的发展,这需要进一步研究以充分了解其中的机制. ...
1
... 嗅觉与代谢之间存在着相互影响的关系.一方面,嗅觉能力会受到营养状况的影响;另一方面,嗅觉还会参与食物摄入、能量消耗和脂质代谢的调节.在调节能量摄入的因素中,气味是诱导食物摄入的重要外部信号,通常被用来评估食物的适口性和摄食选择.嗅觉障碍会对体质量产生怎样的影响仍是一个悬而未决的问题.动物研究[18 ] 发现,消融嗅觉感觉神经元(olfactory sensory neuron,OSN)的小鼠相较于正常小鼠,接受了高脂饮食后的肥胖程度降低,并伴有产热增加,机制可能涉及胰岛素样生长因子1(insulin-like growth factor-1,IGF-1),在OSN小鼠中阻断IGF-1信号会导致肥胖和胰岛素抵抗增加.然而,STAFFORD等[19 ] 发现肥胖者对于高能量食物例如巧克力有关的气味表现出更高的敏感度和偏好.对脂肪的味道、气味和质地的感知会影响对食物的偏好,从而改变饮食摄入量和饮食行为,影响长期健康.KINDLEYSIDES等[20 ] 发现人们对油酸的味觉敏感度和嗅觉敏感度存在相关性,坚果类食物的饮食摄入量与油酸的嗅觉敏感度呈正相关.POESSEL等[21 ] 利用功能磁共振探索了正常体质量人群与超重肥胖患者在闻到不同热量的食物气味时的潜在神经机制,发现对食物气味的嗅觉感知与内嗅皮层、梨状皮质、脑岛、海马体和杏仁核的大脑活动有关,同时这些神经反应与肥胖状况、代谢因素无关,表明对食物气味的处理可能取决于体质量状况和代谢相关指标以外的因素.嗅觉功能改变和肥胖之间关系的确切机制尚未完全清楚,然而,嗅觉功能的改变可能会影响食物摄入和偏好,导致饮食行为和体质量的改变.嗅觉减退的人可能会吃更多的食物,以补偿他们感知食物的嗅觉能力.嗅觉变化可能会影响肥胖的发展,这需要进一步研究以充分了解其中的机制. ...
1
... 嗅觉与代谢之间存在着相互影响的关系.一方面,嗅觉能力会受到营养状况的影响;另一方面,嗅觉还会参与食物摄入、能量消耗和脂质代谢的调节.在调节能量摄入的因素中,气味是诱导食物摄入的重要外部信号,通常被用来评估食物的适口性和摄食选择.嗅觉障碍会对体质量产生怎样的影响仍是一个悬而未决的问题.动物研究[18 ] 发现,消融嗅觉感觉神经元(olfactory sensory neuron,OSN)的小鼠相较于正常小鼠,接受了高脂饮食后的肥胖程度降低,并伴有产热增加,机制可能涉及胰岛素样生长因子1(insulin-like growth factor-1,IGF-1),在OSN小鼠中阻断IGF-1信号会导致肥胖和胰岛素抵抗增加.然而,STAFFORD等[19 ] 发现肥胖者对于高能量食物例如巧克力有关的气味表现出更高的敏感度和偏好.对脂肪的味道、气味和质地的感知会影响对食物的偏好,从而改变饮食摄入量和饮食行为,影响长期健康.KINDLEYSIDES等[20 ] 发现人们对油酸的味觉敏感度和嗅觉敏感度存在相关性,坚果类食物的饮食摄入量与油酸的嗅觉敏感度呈正相关.POESSEL等[21 ] 利用功能磁共振探索了正常体质量人群与超重肥胖患者在闻到不同热量的食物气味时的潜在神经机制,发现对食物气味的嗅觉感知与内嗅皮层、梨状皮质、脑岛、海马体和杏仁核的大脑活动有关,同时这些神经反应与肥胖状况、代谢因素无关,表明对食物气味的处理可能取决于体质量状况和代谢相关指标以外的因素.嗅觉功能改变和肥胖之间关系的确切机制尚未完全清楚,然而,嗅觉功能的改变可能会影响食物摄入和偏好,导致饮食行为和体质量的改变.嗅觉减退的人可能会吃更多的食物,以补偿他们感知食物的嗅觉能力.嗅觉变化可能会影响肥胖的发展,这需要进一步研究以充分了解其中的机制. ...
2
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
2
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
... [23 ]发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
1
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
1
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
1
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
1
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
1
... 早在20世纪,已有研究表明糖尿病患者会出现嗅觉功能障碍,然而病因尚不清楚.LE FLOCH等[22 ] 使用气味识别评分(smell recognition scale,SRS)对糖尿病患者的嗅觉识别能力进行了横断面研究,发现糖尿病患者的嗅觉识别能力受损,这可能与糖尿病微血管并发症(微量白蛋白尿、周围神经病变)的存在有关.同年,WEINSTOCK等[23 ] 使用气味混淆矩阵(odorant confusion matrix,OCM)对111名患有糖尿病的成年人进行了嗅觉识别测试,同样发现他们识别气味的能力下降.此外,有嗅觉障碍的糖尿病患者的空腹血糖水平更高[24 ] .嗅觉功能障碍与糖尿病并发症之间的关联尚不清楚,不同的研究结果之间存在差异.既往有研究[25 -26 ] 发现糖尿病并发症与嗅觉障碍无关.然而,另有研究[23 ] 发现糖尿病患者的嗅觉识别障碍与血糖控制、糖尿病的类型、病程以及微血管并发症(如神经病变、视网膜病变、肾病)无关,但与大血管病变的存在有关,提示与大血管病变相关的后遗症,例如嗅觉区域的缺血,会对嗅觉能力产生负面影响.也有研究[27 ] 表明嗅觉功能障碍与糖尿病并发症之间可能存在关系:相较于健康人群和没有糖尿病并发症的患者,患有2型糖尿病并发症患者的嗅觉能力降低.同时,LI等[28 ] 对美国成年人的调查数据分析发现,嗅觉改变与糖尿病相关并发症之间存在正相关关系,心血管并发症和神经病变在糖尿病前期和糖尿病患者中与嗅觉能力下降相关,提示嗅觉改变可能是糖尿病前期或糖尿病存在和进展的预测因素.然而,尚缺乏大型前瞻性研究探讨糖尿病与嗅觉功能障碍发生和发展之间的因果关系. ...
1
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
1
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
1
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
1
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
1
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
1
... 阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome,OSAS)也是一种代谢性疾病,与代谢综合征组分(包括高血压、胰岛素抵抗和2型糖尿病等)紧密相关,50%~60%的代谢综合征患者同时患有OSAS[29 ] .OSAS患者存在嗅觉功能障碍,其程度与疾病的严重程度有关[30 ] .此外,2型糖尿病、肥胖和胰岛素抵抗也是阿尔茨海默病、帕金森病等神经退行性病变的危险因素[31 -32 ] .有学者认为阿尔茨海默病是一种选择性累及大脑的糖尿病,其分子和生化特征与1型糖尿病和2型糖尿病相似,又被称为“3型糖尿病”[33 ] .嗅觉功能障碍被认为是阿尔茨海默病和帕金森病的早期标志,气味识别已被证明有助于在高危人群中识别临床前阿尔茨海默病患者[5 ] .在帕金森病中,嗅觉功能障碍是最早出现的非运动特征之一,常比运动症状早数年出现[4 ] ;一项在帕金森病患者的无症状亲属中开展的前瞻性研究[34 ] 表明,特发性嗅觉功能障碍与帕金森病发病风险的增加显著相关. ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 代谢性疾病发生嗅觉变化背后的机制尚不完全清楚,但由于能量代谢稳态失衡,例如高血糖、胰岛素抵抗、血管功能障碍、氧化应激及药物影响等,导致肽类激素、脂肪细胞因子和神经递质的改变可能参与了代谢性疾病和嗅觉功能障碍之间关联的机制.外侧下丘脑是葡萄糖感应和调节的关键脑区,外侧下丘脑的食欲素神经元投射到嗅球[35 -36 ] .动物研究[37 ] 观察到食欲素神经元对葡萄糖敏感,因此,糖尿病患者的高血糖可能通过作用于外侧下丘脑的食欲素神经元来影响嗅觉功能.胰岛素抵抗是代谢性疾病的标志之一,它与嗅觉敏感性呈负相关[38 ] .在饮食和遗传诱导的啮齿类肥胖动物模型的研究中发现,嗅球中也存在胰岛素抵抗.在肥胖Zucker大鼠的嗅球中胰岛素与受体的结合减少,提示人类可能以该方式产生嗅球胰岛素抵抗,而这种抵抗可能会破坏嗅觉功能[39 ] ;通过鼻腔吸入胰岛素可以跨越血脑屏障直接到达中枢神经系统并增强嗅觉功能,且该作用呈剂量依赖性[40 ] .中枢神经系统的胰岛素水平和外周血液胰岛素水平对嗅觉阈值的影响是相反的,这可能是因为鼻腔吸入胰岛素改变了嗅觉上皮和嗅皮层的神经元活动[41 ] .此外,糖尿病血管病变[22 ] 与神经病变[42 ] 导致的嗅觉神经损伤或神经传导异常也会导致嗅觉功能障碍,存在慢性微血管并发症的糖尿病患者的嗅觉识别能力较无此并发症的糖尿病患者更低[43 ] . ...
1
... 许多维持能量代谢稳态的分子,例如饥饿素、食欲素、神经肽Y、胰岛素、瘦素和胆囊收缩素等,参与调节食物摄入、能量代谢和嗅觉功能[44 ] ,这些分子在糖尿病、肥胖和其他代谢紊乱中发生改变.瘦素抵抗常伴随着肥胖发生,这会导致肥胖状态下血液中瘦素水平的升高.研究[45 ] 发现瘦素水平和嗅觉功能之间存在负相关性;然而也有研究[46 ] 表明血清瘦素水平与嗅觉评分之间没有相关性.关于饥饿素水平和嗅觉功能之间关系的研究结果同样矛盾不一,其中一项研究[46 ] 表明饥饿素水平和嗅觉阈值之间存在正相关,而另一项研究[47 ] 结果则报告了负相关.激素水平与嗅觉功能关系的研究结论不一,嗅觉受损的代谢性疾病患者的血清瘦素与饥饿素水平的高低尚无共识,需要进一步的研究来阐明代谢改变与嗅觉功能及血清饥饿素、瘦素水平之间的关系.嗅觉和代谢功能是相互影响的,嗅觉也可以通过生物分子调节代谢稳态.MUTLU等[48 ] 利用线虫模型研究发现从嗅觉神经回路释放的神经肽FLP-1(FMRFamide-like peptide-1)通过外周神经肽受体NPR-4(nonexpresser of pathogenesis-related gene 4)、血清和糖皮质激素诱导激酶SGK-1(serine/threonine-protein kinase-1),以及FOXO(forkhead box transcription factors class O)转录因子来调节脂肪储存. ...
1
... 许多维持能量代谢稳态的分子,例如饥饿素、食欲素、神经肽Y、胰岛素、瘦素和胆囊收缩素等,参与调节食物摄入、能量代谢和嗅觉功能[44 ] ,这些分子在糖尿病、肥胖和其他代谢紊乱中发生改变.瘦素抵抗常伴随着肥胖发生,这会导致肥胖状态下血液中瘦素水平的升高.研究[45 ] 发现瘦素水平和嗅觉功能之间存在负相关性;然而也有研究[46 ] 表明血清瘦素水平与嗅觉评分之间没有相关性.关于饥饿素水平和嗅觉功能之间关系的研究结果同样矛盾不一,其中一项研究[46 ] 表明饥饿素水平和嗅觉阈值之间存在正相关,而另一项研究[47 ] 结果则报告了负相关.激素水平与嗅觉功能关系的研究结论不一,嗅觉受损的代谢性疾病患者的血清瘦素与饥饿素水平的高低尚无共识,需要进一步的研究来阐明代谢改变与嗅觉功能及血清饥饿素、瘦素水平之间的关系.嗅觉和代谢功能是相互影响的,嗅觉也可以通过生物分子调节代谢稳态.MUTLU等[48 ] 利用线虫模型研究发现从嗅觉神经回路释放的神经肽FLP-1(FMRFamide-like peptide-1)通过外周神经肽受体NPR-4(nonexpresser of pathogenesis-related gene 4)、血清和糖皮质激素诱导激酶SGK-1(serine/threonine-protein kinase-1),以及FOXO(forkhead box transcription factors class O)转录因子来调节脂肪储存. ...
2
... 许多维持能量代谢稳态的分子,例如饥饿素、食欲素、神经肽Y、胰岛素、瘦素和胆囊收缩素等,参与调节食物摄入、能量代谢和嗅觉功能[44 ] ,这些分子在糖尿病、肥胖和其他代谢紊乱中发生改变.瘦素抵抗常伴随着肥胖发生,这会导致肥胖状态下血液中瘦素水平的升高.研究[45 ] 发现瘦素水平和嗅觉功能之间存在负相关性;然而也有研究[46 ] 表明血清瘦素水平与嗅觉评分之间没有相关性.关于饥饿素水平和嗅觉功能之间关系的研究结果同样矛盾不一,其中一项研究[46 ] 表明饥饿素水平和嗅觉阈值之间存在正相关,而另一项研究[47 ] 结果则报告了负相关.激素水平与嗅觉功能关系的研究结论不一,嗅觉受损的代谢性疾病患者的血清瘦素与饥饿素水平的高低尚无共识,需要进一步的研究来阐明代谢改变与嗅觉功能及血清饥饿素、瘦素水平之间的关系.嗅觉和代谢功能是相互影响的,嗅觉也可以通过生物分子调节代谢稳态.MUTLU等[48 ] 利用线虫模型研究发现从嗅觉神经回路释放的神经肽FLP-1(FMRFamide-like peptide-1)通过外周神经肽受体NPR-4(nonexpresser of pathogenesis-related gene 4)、血清和糖皮质激素诱导激酶SGK-1(serine/threonine-protein kinase-1),以及FOXO(forkhead box transcription factors class O)转录因子来调节脂肪储存. ...
... [46 ]表明饥饿素水平和嗅觉阈值之间存在正相关,而另一项研究[47 ] 结果则报告了负相关.激素水平与嗅觉功能关系的研究结论不一,嗅觉受损的代谢性疾病患者的血清瘦素与饥饿素水平的高低尚无共识,需要进一步的研究来阐明代谢改变与嗅觉功能及血清饥饿素、瘦素水平之间的关系.嗅觉和代谢功能是相互影响的,嗅觉也可以通过生物分子调节代谢稳态.MUTLU等[48 ] 利用线虫模型研究发现从嗅觉神经回路释放的神经肽FLP-1(FMRFamide-like peptide-1)通过外周神经肽受体NPR-4(nonexpresser of pathogenesis-related gene 4)、血清和糖皮质激素诱导激酶SGK-1(serine/threonine-protein kinase-1),以及FOXO(forkhead box transcription factors class O)转录因子来调节脂肪储存. ...
1
... 许多维持能量代谢稳态的分子,例如饥饿素、食欲素、神经肽Y、胰岛素、瘦素和胆囊收缩素等,参与调节食物摄入、能量代谢和嗅觉功能[44 ] ,这些分子在糖尿病、肥胖和其他代谢紊乱中发生改变.瘦素抵抗常伴随着肥胖发生,这会导致肥胖状态下血液中瘦素水平的升高.研究[45 ] 发现瘦素水平和嗅觉功能之间存在负相关性;然而也有研究[46 ] 表明血清瘦素水平与嗅觉评分之间没有相关性.关于饥饿素水平和嗅觉功能之间关系的研究结果同样矛盾不一,其中一项研究[46 ] 表明饥饿素水平和嗅觉阈值之间存在正相关,而另一项研究[47 ] 结果则报告了负相关.激素水平与嗅觉功能关系的研究结论不一,嗅觉受损的代谢性疾病患者的血清瘦素与饥饿素水平的高低尚无共识,需要进一步的研究来阐明代谢改变与嗅觉功能及血清饥饿素、瘦素水平之间的关系.嗅觉和代谢功能是相互影响的,嗅觉也可以通过生物分子调节代谢稳态.MUTLU等[48 ] 利用线虫模型研究发现从嗅觉神经回路释放的神经肽FLP-1(FMRFamide-like peptide-1)通过外周神经肽受体NPR-4(nonexpresser of pathogenesis-related gene 4)、血清和糖皮质激素诱导激酶SGK-1(serine/threonine-protein kinase-1),以及FOXO(forkhead box transcription factors class O)转录因子来调节脂肪储存. ...
1
... 许多维持能量代谢稳态的分子,例如饥饿素、食欲素、神经肽Y、胰岛素、瘦素和胆囊收缩素等,参与调节食物摄入、能量代谢和嗅觉功能[44 ] ,这些分子在糖尿病、肥胖和其他代谢紊乱中发生改变.瘦素抵抗常伴随着肥胖发生,这会导致肥胖状态下血液中瘦素水平的升高.研究[45 ] 发现瘦素水平和嗅觉功能之间存在负相关性;然而也有研究[46 ] 表明血清瘦素水平与嗅觉评分之间没有相关性.关于饥饿素水平和嗅觉功能之间关系的研究结果同样矛盾不一,其中一项研究[46 ] 表明饥饿素水平和嗅觉阈值之间存在正相关,而另一项研究[47 ] 结果则报告了负相关.激素水平与嗅觉功能关系的研究结论不一,嗅觉受损的代谢性疾病患者的血清瘦素与饥饿素水平的高低尚无共识,需要进一步的研究来阐明代谢改变与嗅觉功能及血清饥饿素、瘦素水平之间的关系.嗅觉和代谢功能是相互影响的,嗅觉也可以通过生物分子调节代谢稳态.MUTLU等[48 ] 利用线虫模型研究发现从嗅觉神经回路释放的神经肽FLP-1(FMRFamide-like peptide-1)通过外周神经肽受体NPR-4(nonexpresser of pathogenesis-related gene 4)、血清和糖皮质激素诱导激酶SGK-1(serine/threonine-protein kinase-1),以及FOXO(forkhead box transcription factors class O)转录因子来调节脂肪储存. ...
1
... 随着基因组技术的进步,人们对微生物组失衡与代谢性疾病之间因果关系的研究逐渐深入.肠道微生物紊乱会导致各种常见代谢性疾病,包括肥胖、2型糖尿病、非酒精性肝病和代谢性心血管病等[49 ] .有证据表明,肠道微生物群可能在调节嗅觉功能方面发挥了作用.在一项黑腹果蝇的研究中发现,肠道微生物群可以改变嗅觉引导的行为偏好和营养偏好[50 ] .关于肠道微生物群在嗅觉中的作用,最受关注的观察结果来自无菌小鼠的研究.在无菌小鼠中观察到嗅觉纤毛层变薄以及细胞更新减少,与嗅觉受体转导和外源性代谢相关的基因表达减少,而嗅电图信号幅度整体增加[51 ] ;另一项研究[52 ] 发现携带不同肠道微生物群而遗传背景相同的小鼠的嗅觉偏好和嗅觉上皮功能存在差异.肠道微生物群影响嗅觉的机制并不完全清楚,可能是由肠道微生物群的代谢产物所介导的.O′DONNELL等[53 ] 发现在秀丽隐杆线虫中,共生的肠道细菌普鲁威登菌可以产生一种神经调节因子酪胺,可由宿主的酪胺β-羟化酶转化为章鱼胺,章鱼胺可以靶向感觉神经元上的受体,从而调节宿主的嗅觉反应,抑制神经元驱动的辛醇回避行为,这种抑制辛醇回避的行为将影响宿主的饮食习惯和饮食偏好.动物肠道微生物群可以通过调节化学感觉反应如嗅觉等,在塑造宿主健康相关行为中发挥作用,同时肠道微生物失调与代谢性疾病发生、发展的关系密切[54 ] ,提示肠道菌群可能介导了代谢性疾病的嗅觉改变. ...
1
... 随着基因组技术的进步,人们对微生物组失衡与代谢性疾病之间因果关系的研究逐渐深入.肠道微生物紊乱会导致各种常见代谢性疾病,包括肥胖、2型糖尿病、非酒精性肝病和代谢性心血管病等[49 ] .有证据表明,肠道微生物群可能在调节嗅觉功能方面发挥了作用.在一项黑腹果蝇的研究中发现,肠道微生物群可以改变嗅觉引导的行为偏好和营养偏好[50 ] .关于肠道微生物群在嗅觉中的作用,最受关注的观察结果来自无菌小鼠的研究.在无菌小鼠中观察到嗅觉纤毛层变薄以及细胞更新减少,与嗅觉受体转导和外源性代谢相关的基因表达减少,而嗅电图信号幅度整体增加[51 ] ;另一项研究[52 ] 发现携带不同肠道微生物群而遗传背景相同的小鼠的嗅觉偏好和嗅觉上皮功能存在差异.肠道微生物群影响嗅觉的机制并不完全清楚,可能是由肠道微生物群的代谢产物所介导的.O′DONNELL等[53 ] 发现在秀丽隐杆线虫中,共生的肠道细菌普鲁威登菌可以产生一种神经调节因子酪胺,可由宿主的酪胺β-羟化酶转化为章鱼胺,章鱼胺可以靶向感觉神经元上的受体,从而调节宿主的嗅觉反应,抑制神经元驱动的辛醇回避行为,这种抑制辛醇回避的行为将影响宿主的饮食习惯和饮食偏好.动物肠道微生物群可以通过调节化学感觉反应如嗅觉等,在塑造宿主健康相关行为中发挥作用,同时肠道微生物失调与代谢性疾病发生、发展的关系密切[54 ] ,提示肠道菌群可能介导了代谢性疾病的嗅觉改变. ...
1
... 随着基因组技术的进步,人们对微生物组失衡与代谢性疾病之间因果关系的研究逐渐深入.肠道微生物紊乱会导致各种常见代谢性疾病,包括肥胖、2型糖尿病、非酒精性肝病和代谢性心血管病等[49 ] .有证据表明,肠道微生物群可能在调节嗅觉功能方面发挥了作用.在一项黑腹果蝇的研究中发现,肠道微生物群可以改变嗅觉引导的行为偏好和营养偏好[50 ] .关于肠道微生物群在嗅觉中的作用,最受关注的观察结果来自无菌小鼠的研究.在无菌小鼠中观察到嗅觉纤毛层变薄以及细胞更新减少,与嗅觉受体转导和外源性代谢相关的基因表达减少,而嗅电图信号幅度整体增加[51 ] ;另一项研究[52 ] 发现携带不同肠道微生物群而遗传背景相同的小鼠的嗅觉偏好和嗅觉上皮功能存在差异.肠道微生物群影响嗅觉的机制并不完全清楚,可能是由肠道微生物群的代谢产物所介导的.O′DONNELL等[53 ] 发现在秀丽隐杆线虫中,共生的肠道细菌普鲁威登菌可以产生一种神经调节因子酪胺,可由宿主的酪胺β-羟化酶转化为章鱼胺,章鱼胺可以靶向感觉神经元上的受体,从而调节宿主的嗅觉反应,抑制神经元驱动的辛醇回避行为,这种抑制辛醇回避的行为将影响宿主的饮食习惯和饮食偏好.动物肠道微生物群可以通过调节化学感觉反应如嗅觉等,在塑造宿主健康相关行为中发挥作用,同时肠道微生物失调与代谢性疾病发生、发展的关系密切[54 ] ,提示肠道菌群可能介导了代谢性疾病的嗅觉改变. ...
1
... 随着基因组技术的进步,人们对微生物组失衡与代谢性疾病之间因果关系的研究逐渐深入.肠道微生物紊乱会导致各种常见代谢性疾病,包括肥胖、2型糖尿病、非酒精性肝病和代谢性心血管病等[49 ] .有证据表明,肠道微生物群可能在调节嗅觉功能方面发挥了作用.在一项黑腹果蝇的研究中发现,肠道微生物群可以改变嗅觉引导的行为偏好和营养偏好[50 ] .关于肠道微生物群在嗅觉中的作用,最受关注的观察结果来自无菌小鼠的研究.在无菌小鼠中观察到嗅觉纤毛层变薄以及细胞更新减少,与嗅觉受体转导和外源性代谢相关的基因表达减少,而嗅电图信号幅度整体增加[51 ] ;另一项研究[52 ] 发现携带不同肠道微生物群而遗传背景相同的小鼠的嗅觉偏好和嗅觉上皮功能存在差异.肠道微生物群影响嗅觉的机制并不完全清楚,可能是由肠道微生物群的代谢产物所介导的.O′DONNELL等[53 ] 发现在秀丽隐杆线虫中,共生的肠道细菌普鲁威登菌可以产生一种神经调节因子酪胺,可由宿主的酪胺β-羟化酶转化为章鱼胺,章鱼胺可以靶向感觉神经元上的受体,从而调节宿主的嗅觉反应,抑制神经元驱动的辛醇回避行为,这种抑制辛醇回避的行为将影响宿主的饮食习惯和饮食偏好.动物肠道微生物群可以通过调节化学感觉反应如嗅觉等,在塑造宿主健康相关行为中发挥作用,同时肠道微生物失调与代谢性疾病发生、发展的关系密切[54 ] ,提示肠道菌群可能介导了代谢性疾病的嗅觉改变. ...
1
... 随着基因组技术的进步,人们对微生物组失衡与代谢性疾病之间因果关系的研究逐渐深入.肠道微生物紊乱会导致各种常见代谢性疾病,包括肥胖、2型糖尿病、非酒精性肝病和代谢性心血管病等[49 ] .有证据表明,肠道微生物群可能在调节嗅觉功能方面发挥了作用.在一项黑腹果蝇的研究中发现,肠道微生物群可以改变嗅觉引导的行为偏好和营养偏好[50 ] .关于肠道微生物群在嗅觉中的作用,最受关注的观察结果来自无菌小鼠的研究.在无菌小鼠中观察到嗅觉纤毛层变薄以及细胞更新减少,与嗅觉受体转导和外源性代谢相关的基因表达减少,而嗅电图信号幅度整体增加[51 ] ;另一项研究[52 ] 发现携带不同肠道微生物群而遗传背景相同的小鼠的嗅觉偏好和嗅觉上皮功能存在差异.肠道微生物群影响嗅觉的机制并不完全清楚,可能是由肠道微生物群的代谢产物所介导的.O′DONNELL等[53 ] 发现在秀丽隐杆线虫中,共生的肠道细菌普鲁威登菌可以产生一种神经调节因子酪胺,可由宿主的酪胺β-羟化酶转化为章鱼胺,章鱼胺可以靶向感觉神经元上的受体,从而调节宿主的嗅觉反应,抑制神经元驱动的辛醇回避行为,这种抑制辛醇回避的行为将影响宿主的饮食习惯和饮食偏好.动物肠道微生物群可以通过调节化学感觉反应如嗅觉等,在塑造宿主健康相关行为中发挥作用,同时肠道微生物失调与代谢性疾病发生、发展的关系密切[54 ] ,提示肠道菌群可能介导了代谢性疾病的嗅觉改变. ...
1
... 随着基因组技术的进步,人们对微生物组失衡与代谢性疾病之间因果关系的研究逐渐深入.肠道微生物紊乱会导致各种常见代谢性疾病,包括肥胖、2型糖尿病、非酒精性肝病和代谢性心血管病等[49 ] .有证据表明,肠道微生物群可能在调节嗅觉功能方面发挥了作用.在一项黑腹果蝇的研究中发现,肠道微生物群可以改变嗅觉引导的行为偏好和营养偏好[50 ] .关于肠道微生物群在嗅觉中的作用,最受关注的观察结果来自无菌小鼠的研究.在无菌小鼠中观察到嗅觉纤毛层变薄以及细胞更新减少,与嗅觉受体转导和外源性代谢相关的基因表达减少,而嗅电图信号幅度整体增加[51 ] ;另一项研究[52 ] 发现携带不同肠道微生物群而遗传背景相同的小鼠的嗅觉偏好和嗅觉上皮功能存在差异.肠道微生物群影响嗅觉的机制并不完全清楚,可能是由肠道微生物群的代谢产物所介导的.O′DONNELL等[53 ] 发现在秀丽隐杆线虫中,共生的肠道细菌普鲁威登菌可以产生一种神经调节因子酪胺,可由宿主的酪胺β-羟化酶转化为章鱼胺,章鱼胺可以靶向感觉神经元上的受体,从而调节宿主的嗅觉反应,抑制神经元驱动的辛醇回避行为,这种抑制辛醇回避的行为将影响宿主的饮食习惯和饮食偏好.动物肠道微生物群可以通过调节化学感觉反应如嗅觉等,在塑造宿主健康相关行为中发挥作用,同时肠道微生物失调与代谢性疾病发生、发展的关系密切[54 ] ,提示肠道菌群可能介导了代谢性疾病的嗅觉改变. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...
1
... 肥胖与2型糖尿病等代谢性疾病是引起认知功能障碍的危险因素之一[55 -56 ] ,嗅觉功能障碍有助于早期识别和评估认知功能障碍疾病[57 ] .为了明确2型糖尿病患者嗅觉功能与认知功能之间的关系,SANKE等[58 ] 对250名日本2型糖尿病老年患者进行了气味识别测试和认知功能测试,发现2种测试的得分显著相关,这表明2型糖尿病老年患者的嗅觉功能障碍与认知功能障碍有关.此外,ZHANG等[6 ] 发现在糖尿病患者中,肥胖与情景记忆,以及空腹胰岛素与认知加工速度之间存在负相关,中介效应分析表明嗅觉功能和脑网络介导了糖尿病患者的肥胖、胰岛素释放与认知功能之间的相关性,同时胰高血糖素样肽1受体激动剂可以改善肥胖的糖尿病患者的认知和嗅觉异常.一项在糖尿病前期和糖尿病人群中的前瞻性研究[59 ] 显示,嗅觉功能障碍和特定记忆损害之间存在强关联,这表明嗅觉识别受损可能作为记忆衰退的特定预测因子,在疾病预测中发挥重要作用.一项前瞻性队列研究[60 ] 发现,在基线时存在嗅觉障碍的2型糖尿病老年患者更容易患上痴呆症,提示在2型糖尿病老年患者中,嗅觉功能障碍的出现可能先于痴呆症状.嗅觉异常被认为是帕金森病和阿尔茨海默病的一种常见的前驱症状,并且可以作为疾病早期诊断的一种生物学标志物[4 -5 ] .在阿尔茨海默病的小鼠模型中观察到海马区毛细血管和脑神经管线粒体形态的改变并伴随着突触数量的减少,这些现象也发生在了非阿尔茨海默病的高脂饮食诱导的肥胖小鼠中,表明高脂饮食对记忆的不利影响可能是由于线粒体形态变化导致的突触数量减少[61 ] .嗅觉测试具有低成本和易操作等特点,因此可作为一种代谢性疾病认知障碍的预测手段应用于临床,在代谢性疾病出现认知障碍症状之前减缓或阻止疾病的进展. ...