
上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (1): 131-136.doi: 10.3969/j.issn.1674-8115.2024.01.015
收稿日期:2023-05-31
接受日期:2023-12-05
出版日期:2024-01-28
发布日期:2024-01-28
通讯作者:
李华婷,电子信箱:huarting99@sjtu.edu.cn。作者简介:吴 倩(1998—),女,硕士生;电子信箱:wuqian2021@sjtu.edu.cn。
基金资助:Received:2023-05-31
Accepted:2023-12-05
Online:2024-01-28
Published:2024-01-28
Contact:
LI Huating, E-mail: huarting99@sjtu.edu.cn.Supported by:摘要:
代谢性疾病发病机制复杂,其患病率逐年上升且发病趋向年轻化,已成为全球重要的公共卫生问题。嗅觉是一种重要的感觉功能,在个体的营养和生活质量方面发挥着重要作用。肥胖与嗅觉功能可以相互影响,嗅觉功能受到营养状况的影响,同时在食物摄入、能量消耗和脂质代谢的调节过程中也发挥重要作用,而2型糖尿病、阻塞性睡眠呼吸暂停综合征等代谢性疾病患者也存在嗅觉功能障碍。代谢性疾病出现嗅觉改变的机制包括高血糖、胰岛素抵抗等代谢状态的改变,这些改变可引起肽类激素、脂肪细胞因子和神经递质的调节异常,这些中介分子可能在代谢性疾病和嗅觉功能障碍之间发挥作用;代谢性疾病所产生的血管与神经病变也会引起嗅觉神经的直接损伤或神经传导异常;代谢性疾病导致的肠道菌群紊乱也是引起嗅觉功能障碍的潜在机制。同时,认知功能障碍是代谢性疾病的重要并发症,嗅觉功能障碍是代谢性疾病出现认知障碍的前驱临床表现,有助于疾病的早期识别和评估。该文对代谢性疾病与嗅觉变化之间的关系及其潜在机制的研究现状作一综述。
中图分类号:
吴倩, 李华婷. 代谢性疾病与嗅觉改变及其机制进展[J]. 上海交通大学学报(医学版), 2024, 44(1): 131-136.
WU Qian, LI Huating. Progress of olfactory changes in metabolic diseases and the mechanisms[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 131-136.
| 1 | The Lancet Diabetes Endocrinology. Obesity in China: time to act[J]. Lancet Diabetes Endocrinol, 2021, 9(7): 407. |
| 2 | WANG L M, PENG W, ZHAO Z P, et al. Prevalence and treatment of diabetes in China, 2013‒2018[J]. JAMA, 2021, 326(24): 2498-2506. |
| 3 | BOESVELDT S, DE GRAAF K. The differential role of smell and taste for eating behavior[J]. Perception, 2017, 46(3/4): 307-319. |
| 4 | DOTY R L. Olfactory dysfunction in Parkinson disease[J]. Nat Rev Neurol, 2012, 8(6): 329-339. |
| 5 | LAFAILLE-MAGNAN M E, POIRIER J, ETIENNE P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk[J]. Neurology, 2017, 89(4): 327-335. |
| 6 | ZHANG Z, ZHANG B, WANG X, et al. Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: insights from clinical and functional neuroimaging studies[J]. Diabetes Care, 2019, 42(7): 1274-1283. |
| 7 | FIRESTEIN S. How the olfactory system makes sense of scents[J]. Nature, 2001, 413(6852): 211-218. |
| 8 | THIEBAUD N, JOHNSON M C, BUTLER J L, et al. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning[J]. J Neurosci, 2014, 34(20): 6970-6984. |
| 9 | CAMPOLO J, CORRADI E, RIZZARDI A, et al. Correlates of olfactory impairment in middle-aged non-diabetic Caucasian subjects with stage Ⅰ‒Ⅱ obesity[J]. Eur Arch Otorhinolaryngol, 2021, 278(6): 2047-2054. |
| 10 | PENG M, COUTTS D, WANG T, et al. Systematic review of olfactory shifts related to obesity[J]. Obes Rev, 2019, 20(2): 325-338. |
| 11 | VELLUZZI F, DELEDDA A, ONIDA M, et al. Relationship between olfactory function and BMI in normal weight healthy subjects and patients with overweight or obesity[J]. Nutrients, 2022, 14(6): 1262. |
| 12 | HOLINSKI F, MENENAKOS C, HABER G, et al. Olfactory and gustatory function after bariatric surgery[J]. Obes Surg, 2015, 25(12): 2314-2320. |
| 13 | HANCI D, ALTUN H, ALTUN H, et al. Laparoscopic sleeve gastrectomy improves olfaction sensitivity in morbidly obese patients[J]. Obes Surg, 2016, 26(3): 558-562. |
| 14 | MAKARONIDIS J M, NEILSON S, CHEUNG W H, et al. Reported appetite, taste and smell changes following Roux-en-Y gastric bypass and sleeve gastrectomy: effect of gender, type 2 diabetes and relationship to post-operative weight loss[J]. Appetite, 2016, 107: 93-105. |
| 15 | ZERRWECK C, ZURITA L, ÁLVAREZ G, et al. Taste and olfactory changes following laparoscopic gastric bypass and sleeve gastrectomy[J]. Obes Surg, 2016, 26(6): 1296-1302. |
| 16 | ZERRWECK C, GALLARDO V C, CALLEJA C, et al. Gross olfaction before and after laparoscopic gastric bypass[J]. Obes Surg, 2017, 27(11): 2988-2992. |
| 17 | GUYOT E, DOUGKAS A, ROBERT M, et al. Food preferences and their perceived changes before and after bariatric surgery: a cross-sectional study[J]. Obes Surg, 2021, 31(7): 3075-3082. |
| 18 | RIERA C E, TSAOUSIDOU E, HALLORAN J, et al. The sense of smell impacts metabolic health and obesity[J]. Cell Metab, 2017, 26(1): 198-211.e5. |
| 19 | STAFFORD L D, WHITTLE A. Obese individuals have higher preference and sensitivity to odor of chocolate[J]. Chem Senses, 2015, 40(4): 279-284. |
| 20 | KINDLEYSIDES S, BECK K L, WALSH D C I, et al. Fat sensation: fatty acid taste and olfaction sensitivity and the link with disinhibited eating behaviour[J]. Nutrients, 2017, 9(8): 879. |
| 21 | POESSEL M, MORYS F, BREUER N, et al. Brain response to food odors is not associated with body mass index and obesity-related metabolic health measures[J]. Appetite, 2022, 168: 105774. |
| 22 | LE FLOCH J P, LE LIÈVRE G, LABROUE M, et al. Smell dysfunction and related factors in diabetic patients[J]. Diabetes Care, 1993, 16(6): 934-937. |
| 23 | WEINSTOCK R S, WRIGHT H N, SMITH D U. Olfactory dysfunction in diabetes mellitus[J]. Physiol Behav, 1993, 53(1): 17-21. |
| 24 | CATAMO E, TORNESE G, CONCAS M P, et al. Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls[J]. Nutr Metab Cardiovasc Dis, 2021, 31(1): 193-200. |
| 25 | RASMUSSEN V F, VESTERGAARD E T, HEJLESEN O, et al. Prevalence of taste and smell impairment in adults with diabetes: a cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES)[J]. Prim Care Diabetes, 2018, 12(5): 453-459. |
| 26 | KAYA K S, MAZı E E, DEMIR S T, et al. Relationship between progression of type 2 diabetes mellitus and olfactory function[J]. Am J Otolaryngol, 2020, 41(2): 102365. |
| 27 | MOZZANICA F, FERRULLI A, VUJOSEVIC S, et al. Olfactory disfunction and diabetic complications in type 2 diabetic patients: a pilot study[J]. Endocrine, 2022, 75(3): 760-767. |
| 28 | LI J, LI M Y, ZHANG J J, et al. Associations between taste and smell alterations and diabetes-related comorbidities among US adults: the National Health and Nutrition Examination Surveys 2011‒2014[J]. Acta Diabetol, 2022, 59(3): 429-433. |
| 29 | BOREL A L. Sleep apnea and sleep habits: relationships with metabolic syndrome[J]. Nutrients, 2019, 11(11): 2628. |
| 30 | MAGLIULO G, DE VINCENTIIS M, IANNELLA G, et al. Olfactory evaluation in obstructive sleep apnoea patients[J]. Acta Otorhinolaryngol Ital, 2018, 38(4): 338-345. |
| 31 | ARNOLD S E, ARVANITAKIS Z, MACAULEY-RAMBACH S L, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181. |
| 32 | BOSCO D, PLASTINO M, CRISTIANO D, et al. Dementia is associated with insulin resistance in patients with Parkinson′s disease[J]. J Neurol Sci, 2012, 315(1/2): 39-43. |
| 33 | DE LA MONTE S M, WANDS J R. Alzheimer′s disease is type 3 diabetes: evidence reviewed[J]. J Diabetes Sci Technol, 2008, 2(6): 1101-1113. |
| 34 | PONSEN M M, STOFFERS D, BOOIJ J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson′s disease[J]. Ann Neurol, 2004, 56(2): 173-181. |
| 35 | TAHERI S, MAHMOODI M, OPACKA-JUFFRY J, et al. Distribution and quantification of immunoreactive orexin A in rat tissues[J]. FEBS Lett, 1999, 457(1): 157-161. |
| 36 | ZAGHLOUL H, PALLAYOVA M, AL-NUAIMI O, et al. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions[J]. Diabet Med, 2018, 35(1): 41-52. |
| 37 | KOSSE C, GONZALEZ A, BURDAKOV D. Predictive models of glucose control: roles for glucose-sensing neurones[J]. Acta Physiol, 2015, 213(1): 7-18. |
| 38 | POESSEL M, FREIHERR J, WIENCKE K, et al. Insulin resistance is associated with reduced food odor sensitivity across a wide range of body weights[J]. Nutrients, 2020, 12(8): 2201. |
| 39 | FIGLEWICZ D P, IKEDA H, HUNT T R, et al. Brain insulin binding is decreased in Wistar Kyoto rats carrying the 'fa' gene[J]. Peptides, 1986, 7(1): 61-65. |
| 40 | EDWIN THANARAJAH S, HOFFSTALL V, RIGOUX L, et al. The role of insulin sensitivity and intranasally applied insulin on olfactory perception[J]. Sci Rep, 2019, 9(1): 7222. |
| 41 | MURATA K, KINOSHITA T, FUKAZAWA Y, et al. GABAergic neurons in the olfactory cortex projecting to the lateral hypothalamus in mice[J]. Sci Rep, 2019, 9(1): 7132. |
| 42 | VÁRKONYI T, KÖREI A, PUTZ Z, et al. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy?[J]. Angiology, 2014, 65(10): 857-860. |
| 43 | DUDA-SOBCZAK A, ARASZKIEWICZ A, URBAS M, et al. Impaired olfactory function is related to the presence of neuropathy in adults with type 1 diabetes[J]. Diab Vasc Dis Res, 2017, 14(2): 139-143. |
| 44 | PALOUZIER-PAULIGNAN B, LACROIX M C, AIMÉ P, et al. Olfaction under metabolic influences[J]. Chem Senses, 2012, 37(9): 769-797. |
| 45 | FERNANDEZ-GARCIA J C, ALCAIDE J, SANTIAGO-FERNANDEZ C, et al. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity[J]. PLoS One, 2017, 12(2): e0171204. |
| 46 | UYGUN B, KIYICI S, OZMEN S, et al. The association between olfaction and taste functions with serum ghrelin and leptin levels in obese women[J]. Metab Syndr Relat Disord, 2019, 17(9): 452-457. |
| 47 | FERNÁNDEZ-ARANDA F, AGÜERA Z, FERNÁNDEZ-GARCÍA J C, et al. Smell-taste dysfunctions in extreme weight/eating conditions: analysis of hormonal and psychological interactions[J]. Endocrine, 2016, 51(2): 256-267. |
| 48 | MUTLU A S, GAO S M, ZHANG H N, et al. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans[J]. Nat Commun, 2020, 11(1): 1450. |
| 49 | FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. |
| 50 | WONG A C N, WANG Q P, MORIMOTO J, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila[J]. Curr Biol, 2017, 27(15): 2397-2404.e4. |
| 51 | FRANÇOIS A, GREBERT D, RHIMI M, et al. Olfactory epithelium changes in germfree mice[J]. Sci Rep, 2016, 6: 24687. |
| 52 | NAUDON L, FRANÇOIS A, MARIADASSOU M, et al. First step of odorant detection in the olfactory epithelium and olfactory preferences differ according to the microbiota profile in mice[J]. Behav Brain Res, 2020, 384: 112549. |
| 53 | O'DONNELL M P, FOX B W, CHAO P H, et al. A neurotransmitter produced by gut bacteria modulates host sensory behaviour[J]. Nature, 2020, 583(7816): 415-420. |
| 54 | CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481. |
| 55 | BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. |
| 56 | TANAKA H, GOURLEY D D, DEKHTYAR M, et al. Cognition, brain structure, and brain function in individuals with obesity and related disorders[J]. Curr Obes Rep, 2020, 9(4): 544-549. |
| 57 | JUNG H J, SHIN I S, LEE J E. Olfactory function in mild cognitive impairment and Alzheimer′s disease: a meta-analysis[J]. Laryngoscope, 2019, 129(2): 362-369. |
| 58 | SANKE H, MITA T, YOSHII H, et al. Relationship between olfactory dysfunction and cognitive impairment in elderly patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2014, 106(3): 465-473. |
| 59 | YULUG B, SAATCI O, IŞIKLAR A, et al. The association between HbA1c levels, olfactory memory and cognition in normal, pre-diabetic and diabetic persons[J]. Endocr Metab Immune Disord Drug Targets, 2020, 20(2): 198-212. |
| 60 | SANKE H, MITA T, YOSHII H, et al. Olfactory dysfunction predicts the development of dementia in older patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2021, 174: 108740. |
| 61 | MARTINS I V A, RIVERS-AUTY J, ALLAN S M, et al. Mitochondrial abnormalities and synaptic loss underlie memory deficits seen in mouse models of obesity and Alzheimer′s disease[J]. J Alzheimers Dis, 2017, 55(3): 915-932. |
| [1] | 黄英荷, 招冠钰, 孙阳, 侯鉴基, 左勇. 2型糖尿病创面愈合中巨噬细胞代谢调控的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(6): 792-799. |
| [2] | 连明珠, 张常晓, 盛凯, 郭梦, 方姝予. 老年营养风险指数对住院老年2型糖尿病患者发生肺部感染的预测价值[J]. 上海交通大学学报(医学版), 2025, 45(4): 452-458. |
| [3] | 林祎嘉, 程丽珍, 胡廷军, 苗雅. 基于孟德尔随机化法的2型糖尿病与认知障碍因果关系研究[J]. 上海交通大学学报(医学版), 2025, 45(2): 204-210. |
| [4] | 王黎阳, 薛蔚. 氧化应激在糖尿病膀胱功能障碍发生发展中作用的研究进展[J]. 上海交通大学学报(医学版), 2025, 45(2): 241-246. |
| [5] | 陆佳萍, 刘醒, 张林杉, 赵琳, 张敏, 李小英, 刘玥隽. 腹部脂肪面积与2型糖尿病患者胰岛β细胞第一时相分泌功能的关系[J]. 上海交通大学学报(医学版), 2025, 45(1): 42-50. |
| [6] | 康飘, 张盈, 李华婷. 食物偏好机制及其对肥胖影响的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(9): 1190-1196. |
| [7] | 刘美志, 王子杨, 姜雅宁, 弥萌, 孙永宁. 番泻苷A对2型糖尿病小鼠动脉粥样硬化斑块形成及5-羟色胺信号分子表达的影响[J]. 上海交通大学学报(医学版), 2024, 44(8): 991-998. |
| [8] | 陈铭豪, 刘沛雨, 王旋, 吴一想, 江玉瑾, 张朝阳, 张敬法. 糖尿病视网膜病变的药物治疗研究进展[J]. 上海交通大学学报(医学版), 2024, 44(7): 822-829. |
| [9] | 魏云鑫, 蒋绪顺, 蔡梦瑶, 温睿智, 杜晓刚. COMP与糖尿病肾病自噬相关性分析及其功能验证[J]. 上海交通大学学报(医学版), 2024, 44(7): 847-858. |
| [10] | 俞洋, 孟丹, 仇奕文, 袁见, 朱莹杰. 两样本孟德尔随机化法分析1型糖尿病对结直肠癌的影响[J]. 上海交通大学学报(医学版), 2024, 44(6): 755-761. |
| [11] | 杜亚格, 卢言慧, 安宇, 宋颖, 郑婕. 肠道菌群在糖尿病认知功能障碍中的作用机制及靶向干预的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(4): 494-500. |
| [12] | 王莹, 平立风, 刘彤彤, 刘珊珊, 刘磊. 甲基莲心碱调节SDF-1/CXCR4信号通路对糖尿病肾病的影响[J]. 上海交通大学学报(医学版), 2024, 44(2): 183-195. |
| [13] | 吴丽蓉, 陈瑞华, 晁筱雯, 郭雨槐, 孙涛, 李梦慈, 陈天璐. 空腹血糖升高与认知功能恶化的代谢关联研究[J]. 上海交通大学学报(医学版), 2024, 44(2): 212-222. |
| [14] | 蒋莹, 李清瑶, 陈之琦, 汪佳璐, 李云, 徐仁应. 老年人群体质量指数与慢性代谢性疾病的关系[J]. 上海交通大学学报(医学版), 2024, 44(2): 250-257. |
| [15] | 江爽, 俞继卫. m6A去甲基化酶在胃癌发生发展中的作用机制研究进展[J]. 上海交通大学学报(医学版), 2024, 44(2): 271-277. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
