上海交通大学学报(医学版) ›› 2024, Vol. 44 ›› Issue (1): 131-136.doi: 10.3969/j.issn.1674-8115.2024.01.015
• 综述 • 上一篇
收稿日期:
2023-05-31
接受日期:
2023-12-05
出版日期:
2024-01-28
发布日期:
2024-02-28
通讯作者:
李华婷
E-mail:wuqian2021@sjtu.edu.cn;huarting99@sjtu.edu.cn
作者简介:
吴 倩(1998—),女,硕士生;电子信箱:wuqian2021@sjtu.edu.cn。
基金资助:
Received:
2023-05-31
Accepted:
2023-12-05
Online:
2024-01-28
Published:
2024-02-28
Contact:
LI Huating
E-mail:wuqian2021@sjtu.edu.cn;huarting99@sjtu.edu.cn
Supported by:
摘要:
代谢性疾病发病机制复杂,其患病率逐年上升且发病趋向年轻化,已成为全球重要的公共卫生问题。嗅觉是一种重要的感觉功能,在个体的营养和生活质量方面发挥着重要作用。肥胖与嗅觉功能可以相互影响,嗅觉功能受到营养状况的影响,同时在食物摄入、能量消耗和脂质代谢的调节过程中也发挥重要作用,而2型糖尿病、阻塞性睡眠呼吸暂停综合征等代谢性疾病患者也存在嗅觉功能障碍。代谢性疾病出现嗅觉改变的机制包括高血糖、胰岛素抵抗等代谢状态的改变,这些改变可引起肽类激素、脂肪细胞因子和神经递质的调节异常,这些中介分子可能在代谢性疾病和嗅觉功能障碍之间发挥作用;代谢性疾病所产生的血管与神经病变也会引起嗅觉神经的直接损伤或神经传导异常;代谢性疾病导致的肠道菌群紊乱也是引起嗅觉功能障碍的潜在机制。同时,认知功能障碍是代谢性疾病的重要并发症,嗅觉功能障碍是代谢性疾病出现认知障碍的前驱临床表现,有助于疾病的早期识别和评估。该文对代谢性疾病与嗅觉变化之间的关系及其潜在机制的研究现状作一综述。
中图分类号:
吴倩, 李华婷. 代谢性疾病与嗅觉改变及其机制进展[J]. 上海交通大学学报(医学版), 2024, 44(1): 131-136.
WU Qian, LI Huating. Progress of olfactory changes in metabolic diseases and the mechanisms[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 131-136.
1 | The Lancet Diabetes Endocrinology. Obesity in China: time to act[J]. Lancet Diabetes Endocrinol, 2021, 9(7): 407. |
2 | WANG L M, PENG W, ZHAO Z P, et al. Prevalence and treatment of diabetes in China, 2013‒2018[J]. JAMA, 2021, 326(24): 2498-2506. |
3 | BOESVELDT S, DE GRAAF K. The differential role of smell and taste for eating behavior[J]. Perception, 2017, 46(3/4): 307-319. |
4 | DOTY R L. Olfactory dysfunction in Parkinson disease[J]. Nat Rev Neurol, 2012, 8(6): 329-339. |
5 | LAFAILLE-MAGNAN M E, POIRIER J, ETIENNE P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk[J]. Neurology, 2017, 89(4): 327-335. |
6 | ZHANG Z, ZHANG B, WANG X, et al. Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: insights from clinical and functional neuroimaging studies[J]. Diabetes Care, 2019, 42(7): 1274-1283. |
7 | FIRESTEIN S. How the olfactory system makes sense of scents[J]. Nature, 2001, 413(6852): 211-218. |
8 | THIEBAUD N, JOHNSON M C, BUTLER J L, et al. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning[J]. J Neurosci, 2014, 34(20): 6970-6984. |
9 | CAMPOLO J, CORRADI E, RIZZARDI A, et al. Correlates of olfactory impairment in middle-aged non-diabetic Caucasian subjects with stage Ⅰ‒Ⅱ obesity[J]. Eur Arch Otorhinolaryngol, 2021, 278(6): 2047-2054. |
10 | PENG M, COUTTS D, WANG T, et al. Systematic review of olfactory shifts related to obesity[J]. Obes Rev, 2019, 20(2): 325-338. |
11 | VELLUZZI F, DELEDDA A, ONIDA M, et al. Relationship between olfactory function and BMI in normal weight healthy subjects and patients with overweight or obesity[J]. Nutrients, 2022, 14(6): 1262. |
12 | HOLINSKI F, MENENAKOS C, HABER G, et al. Olfactory and gustatory function after bariatric surgery[J]. Obes Surg, 2015, 25(12): 2314-2320. |
13 | HANCI D, ALTUN H, ALTUN H, et al. Laparoscopic sleeve gastrectomy improves olfaction sensitivity in morbidly obese patients[J]. Obes Surg, 2016, 26(3): 558-562. |
14 | MAKARONIDIS J M, NEILSON S, CHEUNG W H, et al. Reported appetite, taste and smell changes following Roux-en-Y gastric bypass and sleeve gastrectomy: effect of gender, type 2 diabetes and relationship to post-operative weight loss[J]. Appetite, 2016, 107: 93-105. |
15 | ZERRWECK C, ZURITA L, ÁLVAREZ G, et al. Taste and olfactory changes following laparoscopic gastric bypass and sleeve gastrectomy[J]. Obes Surg, 2016, 26(6): 1296-1302. |
16 | ZERRWECK C, GALLARDO V C, CALLEJA C, et al. Gross olfaction before and after laparoscopic gastric bypass[J]. Obes Surg, 2017, 27(11): 2988-2992. |
17 | GUYOT E, DOUGKAS A, ROBERT M, et al. Food preferences and their perceived changes before and after bariatric surgery: a cross-sectional study[J]. Obes Surg, 2021, 31(7): 3075-3082. |
18 | RIERA C E, TSAOUSIDOU E, HALLORAN J, et al. The sense of smell impacts metabolic health and obesity[J]. Cell Metab, 2017, 26(1): 198-211.e5. |
19 | STAFFORD L D, WHITTLE A. Obese individuals have higher preference and sensitivity to odor of chocolate[J]. Chem Senses, 2015, 40(4): 279-284. |
20 | KINDLEYSIDES S, BECK K L, WALSH D C I, et al. Fat sensation: fatty acid taste and olfaction sensitivity and the link with disinhibited eating behaviour[J]. Nutrients, 2017, 9(8): 879. |
21 | POESSEL M, MORYS F, BREUER N, et al. Brain response to food odors is not associated with body mass index and obesity-related metabolic health measures[J]. Appetite, 2022, 168: 105774. |
22 | LE FLOCH J P, LE LIÈVRE G, LABROUE M, et al. Smell dysfunction and related factors in diabetic patients[J]. Diabetes Care, 1993, 16(6): 934-937. |
23 | WEINSTOCK R S, WRIGHT H N, SMITH D U. Olfactory dysfunction in diabetes mellitus[J]. Physiol Behav, 1993, 53(1): 17-21. |
24 | CATAMO E, TORNESE G, CONCAS M P, et al. Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls[J]. Nutr Metab Cardiovasc Dis, 2021, 31(1): 193-200. |
25 | RASMUSSEN V F, VESTERGAARD E T, HEJLESEN O, et al. Prevalence of taste and smell impairment in adults with diabetes: a cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES)[J]. Prim Care Diabetes, 2018, 12(5): 453-459. |
26 | KAYA K S, MAZı E E, DEMIR S T, et al. Relationship between progression of type 2 diabetes mellitus and olfactory function[J]. Am J Otolaryngol, 2020, 41(2): 102365. |
27 | MOZZANICA F, FERRULLI A, VUJOSEVIC S, et al. Olfactory disfunction and diabetic complications in type 2 diabetic patients: a pilot study[J]. Endocrine, 2022, 75(3): 760-767. |
28 | LI J, LI M Y, ZHANG J J, et al. Associations between taste and smell alterations and diabetes-related comorbidities among US adults: the National Health and Nutrition Examination Surveys 2011‒2014[J]. Acta Diabetol, 2022, 59(3): 429-433. |
29 | BOREL A L. Sleep apnea and sleep habits: relationships with metabolic syndrome[J]. Nutrients, 2019, 11(11): 2628. |
30 | MAGLIULO G, DE VINCENTIIS M, IANNELLA G, et al. Olfactory evaluation in obstructive sleep apnoea patients[J]. Acta Otorhinolaryngol Ital, 2018, 38(4): 338-345. |
31 | ARNOLD S E, ARVANITAKIS Z, MACAULEY-RAMBACH S L, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181. |
32 | BOSCO D, PLASTINO M, CRISTIANO D, et al. Dementia is associated with insulin resistance in patients with Parkinson′s disease[J]. J Neurol Sci, 2012, 315(1/2): 39-43. |
33 | DE LA MONTE S M, WANDS J R. Alzheimer′s disease is type 3 diabetes: evidence reviewed[J]. J Diabetes Sci Technol, 2008, 2(6): 1101-1113. |
34 | PONSEN M M, STOFFERS D, BOOIJ J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson′s disease[J]. Ann Neurol, 2004, 56(2): 173-181. |
35 | TAHERI S, MAHMOODI M, OPACKA-JUFFRY J, et al. Distribution and quantification of immunoreactive orexin A in rat tissues[J]. FEBS Lett, 1999, 457(1): 157-161. |
36 | ZAGHLOUL H, PALLAYOVA M, AL-NUAIMI O, et al. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions[J]. Diabet Med, 2018, 35(1): 41-52. |
37 | KOSSE C, GONZALEZ A, BURDAKOV D. Predictive models of glucose control: roles for glucose-sensing neurones[J]. Acta Physiol, 2015, 213(1): 7-18. |
38 | POESSEL M, FREIHERR J, WIENCKE K, et al. Insulin resistance is associated with reduced food odor sensitivity across a wide range of body weights[J]. Nutrients, 2020, 12(8): 2201. |
39 | FIGLEWICZ D P, IKEDA H, HUNT T R, et al. Brain insulin binding is decreased in Wistar Kyoto rats carrying the 'fa' gene[J]. Peptides, 1986, 7(1): 61-65. |
40 | EDWIN THANARAJAH S, HOFFSTALL V, RIGOUX L, et al. The role of insulin sensitivity and intranasally applied insulin on olfactory perception[J]. Sci Rep, 2019, 9(1): 7222. |
41 | MURATA K, KINOSHITA T, FUKAZAWA Y, et al. GABAergic neurons in the olfactory cortex projecting to the lateral hypothalamus in mice[J]. Sci Rep, 2019, 9(1): 7132. |
42 | VÁRKONYI T, KÖREI A, PUTZ Z, et al. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy?[J]. Angiology, 2014, 65(10): 857-860. |
43 | DUDA-SOBCZAK A, ARASZKIEWICZ A, URBAS M, et al. Impaired olfactory function is related to the presence of neuropathy in adults with type 1 diabetes[J]. Diab Vasc Dis Res, 2017, 14(2): 139-143. |
44 | PALOUZIER-PAULIGNAN B, LACROIX M C, AIMÉ P, et al. Olfaction under metabolic influences[J]. Chem Senses, 2012, 37(9): 769-797. |
45 | FERNANDEZ-GARCIA J C, ALCAIDE J, SANTIAGO-FERNANDEZ C, et al. An increase in visceral fat is associated with a decrease in the taste and olfactory capacity[J]. PLoS One, 2017, 12(2): e0171204. |
46 | UYGUN B, KIYICI S, OZMEN S, et al. The association between olfaction and taste functions with serum ghrelin and leptin levels in obese women[J]. Metab Syndr Relat Disord, 2019, 17(9): 452-457. |
47 | FERNÁNDEZ-ARANDA F, AGÜERA Z, FERNÁNDEZ-GARCÍA J C, et al. Smell-taste dysfunctions in extreme weight/eating conditions: analysis of hormonal and psychological interactions[J]. Endocrine, 2016, 51(2): 256-267. |
48 | MUTLU A S, GAO S M, ZHANG H N, et al. Olfactory specificity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans[J]. Nat Commun, 2020, 11(1): 1450. |
49 | FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. |
50 | WONG A C N, WANG Q P, MORIMOTO J, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila[J]. Curr Biol, 2017, 27(15): 2397-2404.e4. |
51 | FRANÇOIS A, GREBERT D, RHIMI M, et al. Olfactory epithelium changes in germfree mice[J]. Sci Rep, 2016, 6: 24687. |
52 | NAUDON L, FRANÇOIS A, MARIADASSOU M, et al. First step of odorant detection in the olfactory epithelium and olfactory preferences differ according to the microbiota profile in mice[J]. Behav Brain Res, 2020, 384: 112549. |
53 | O'DONNELL M P, FOX B W, CHAO P H, et al. A neurotransmitter produced by gut bacteria modulates host sensory behaviour[J]. Nature, 2020, 583(7816): 415-420. |
54 | CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481. |
55 | BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604. |
56 | TANAKA H, GOURLEY D D, DEKHTYAR M, et al. Cognition, brain structure, and brain function in individuals with obesity and related disorders[J]. Curr Obes Rep, 2020, 9(4): 544-549. |
57 | JUNG H J, SHIN I S, LEE J E. Olfactory function in mild cognitive impairment and Alzheimer′s disease: a meta-analysis[J]. Laryngoscope, 2019, 129(2): 362-369. |
58 | SANKE H, MITA T, YOSHII H, et al. Relationship between olfactory dysfunction and cognitive impairment in elderly patients with type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2014, 106(3): 465-473. |
59 | YULUG B, SAATCI O, IŞIKLAR A, et al. The association between HbA1c levels, olfactory memory and cognition in normal, pre-diabetic and diabetic persons[J]. Endocr Metab Immune Disord Drug Targets, 2020, 20(2): 198-212. |
60 | SANKE H, MITA T, YOSHII H, et al. Olfactory dysfunction predicts the development of dementia in older patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2021, 174: 108740. |
61 | MARTINS I V A, RIVERS-AUTY J, ALLAN S M, et al. Mitochondrial abnormalities and synaptic loss underlie memory deficits seen in mouse models of obesity and Alzheimer′s disease[J]. J Alzheimers Dis, 2017, 55(3): 915-932. |
[1] | 江全鑫, 陈素贞, 刘军力. 铜蓝蛋白在脂质代谢稳态调控中作用的研究进展[J]. 上海交通大学学报(医学版), 2024, 44(1): 124-130. |
[2] | 贾君杰, 邢海帆, 张群子, 刘奇烨, 汪年松, 范瑛. 缺氧诱导因子-1α抑 制剂YC-1改善糖尿病肾病小鼠肾脏损伤的机制研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1089-1098. |
[3] | 吴凯敏, 麻静, 赵旭赟. 间歇性禁食联合产热脂肪活化防治小鼠肥胖作用研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1131-1144. |
[4] | 薛彦斌, 齐季瑛, 张子政, 经仁洁, 孙文, 姚华彦, 何萍, 崔斌, 宁光. 上海糖尿病临床专病大数据库建设与真实世界研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1145-1152. |
[5] | 卢晓冰, 岳江, 何晟赟, 董莹, 路青, 麻静. 大腿骨骼肌肌内脂肪组织的含量对肥胖症男性患者糖代谢的影响[J]. 上海交通大学学报(医学版), 2023, 43(9): 1169-1174. |
[6] | 吴凌恒, 陈建雄, 张梦娇, 沙蕾, 曹萌萌, 沈崔琴, 杜联芳, 李朝军. 血糖控制不理想对2型糖尿病患者亚临床心肌收缩功能的影响研究[J]. 上海交通大学学报(医学版), 2023, 43(8): 1024-1031. |
[7] | 高楠, 郝璨, 马冰洁, 靳天, 马柯, 刘晓明. 转位分子蛋白经由Keap1/Nrf2/HO-1通路激活自噬缓解大鼠糖尿病神经病理性疼痛[J]. 上海交通大学学报(医学版), 2023, 43(8): 988-996. |
[8] | 王景慧, 张红, 张蓉, 彭丹凤, 余海蓉, 陈香慧, 宣晔, 胡承, 顾云娟. 利用全外显子测序在肥胖人群中筛查致病突变[J]. 上海交通大学学报(医学版), 2023, 43(7): 882-889. |
[9] | 孟祥雨, 闫丹丹, 陈香慧, 赖思宇, 徐云, 耿瑞娜, 张红, 张蓉, 胡承, 严婧. 家系全外显子组测序鉴定Wolfram综合征致病突变及其临床性状分析[J]. 上海交通大学学报(医学版), 2023, 43(7): 898-905. |
[10] | 王洁仪, 郑丹, 郑晓皎, 贾伟, 赵爱华. 茶褐素生物学活性及其作用机制的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 768-774. |
[11] | 蒋昕婷, 黄高忠. 营养干预对阿尔茨海默病相关认知障碍影响的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 788-794. |
[12] | 刘桃桃, 刘晓黎, 邬静莹, 倪瑞隆, 张梦圆, 季杜欣, 张梅, 曹立. 成人脑型肾上腺脑白质营养不良的临床及遗传学特征[J]. 上海交通大学学报(医学版), 2023, 43(5): 592-599. |
[13] | 刘芊若, 方子晨, 吴宇涵, 钟羡欣, 国沐禾, 贾洁. 肠道菌群及其代谢产物与妊娠期糖尿病相关性的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(5): 641-647. |
[14] | 张越, 瞿蕾, 谷沁, 朱亦清, 马莉莹, 孙文广. 妊娠期糖尿病孕妇尿酮体持续阳性对母婴临床结局的影响[J]. 上海交通大学学报(医学版), 2023, 43(3): 314-319. |
[15] | 陈奕馨, 程丽珍, 林祎嘉, 苗雅. 2型糖尿病脑病小鼠海马中转录因子EB活性与自噬功能的变化[J]. 上海交通大学学报(医学版), 2023, 43(2): 162-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||