上海交通大学学报(医学版) ›› 2023, Vol. 43 ›› Issue (6): 788-794.doi: 10.3969/j.issn.1674-8115.2023.06.017
• 综述 • 上一篇
收稿日期:
2022-11-22
接受日期:
2023-04-10
出版日期:
2023-06-28
发布日期:
2023-06-28
通讯作者:
黄高忠
E-mail:jiangxinting0914@163.com;huanggaozhong@126.com
作者简介:
蒋昕婷(1996—),女,硕士生;电子信箱:jiangxinting0914@163.com。
JIANG Xinting(), HUANG Gaozhong()
Received:
2022-11-22
Accepted:
2023-04-10
Online:
2023-06-28
Published:
2023-06-28
Contact:
HUANG Gaozhong
E-mail:jiangxinting0914@163.com;huanggaozhong@126.com
摘要:
阿尔茨海默病(Alzheimer's disease,AD)是一种与年龄相关的神经退行性疾病,其发病隐匿、病程进展缓慢。AD从仅有大脑病理改变到临床可识别的认知功能改变,受生物体内外的多种环境因素的影响,可持续数十年。认知障碍是AD的一个重要临床特征,影响老年人晚年生存质量,而现有的AD治疗药物尚不能治愈该疾病,提示早期预防AD相关认知障碍的重要性。目前关于营养与AD的关系的研究,大部分支持营养干预为AD相关认知障碍的一种预防方法。饮食的补充或限制对AD相关认知障碍的作用与多条途径相关。值得注意的是,肠道微生物群作为饮食对宿主作用的重要介质,可通过“微生物群-肠道-大脑轴”影响大脑认知功能。某些食物具有的抗氧化、抗炎症的性质有利于改善大脑认知功能。该文分析近些年相关研究,对某些单一营养成分(维生素、多酚、长链多不饱和脂肪酸)和整体饮食模式(地中海饮食、高血压防治饮食、延缓神经退行性疾病的地中海饮食模式、生酮饮食)对认知功能的影响进行讨论,以期为AD相关认知障碍的预防和治疗提供思路和参考。
中图分类号:
蒋昕婷, 黄高忠. 营养干预对阿尔茨海默病相关认知障碍影响的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 788-794.
JIANG Xinting, HUANG Gaozhong. Research progress in the effect of nutritional intervention on cognitive impairment related to Alzheimer's disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 788-794.
1 | GARRE-OLMO J. Epidemiology of Alzheimer's disease and other dementias[J]. Rev Neurol, 2018, 66(11): 377-386. |
2 | SORIA LOPEZ J A, GONZÁLEZ H M, LÉGER G C. Alzheimer's disease[J]. Handb Clin Neurol, 2019, 167: 231-255. |
3 | HANSEEUW B J, BETENSKY R A, JACOBS H I L, et al. Association of amyloid and tau with cognition in preclinical Alzheimer disease: a longitudinal study[J]. JAMA Neurol, 2019, 76(8): 915-924. |
4 | BAIRAMIAN D, SHA S, ROLHION N, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer's disease[J]. Mol Neurodegener, 2022, 17(1): 19. |
5 | ZARRINPAR A, CHAIX A, YOOSEPH S, et al. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome[J]. Cell Metab, 2014, 20(6): 1006-1017. |
6 | DOMINGUEZ L J, VERONESE N, VERNUCCIO L, et al. Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia[J]. Nutrients, 2021, 13(11): 4080. |
7 | 徐俊, 姜季委, 石汉平. 营养干预在阿尔茨海默病四级预防策略中的临床意义[J]. 肿瘤代谢与营养电子杂志, 2022, 9(5): 566-571. |
XU J, JIANG J W, SHI H P. Clinical significance of nutritional intervention in four-level prevention strategy of Alzheimer's disease[J]. Electronic Journal of Metabolism and Nutrition of Cancer, 2022, 9(5): 566-571. | |
8 | AN Y, FENG L L, ZHANG X N, et al. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1[J]. Clin Epigenetics, 2019, 11(1): 139. |
9 | OULHAJ A, REFSUM H, BEAUMONT H, et al. Homocysteine as a predictor of cognitive decline in Alzheimer's disease[J]. Int J Geriatr Psychiatry, 2010, 25(1): 82-90. |
10 | DE JAGER C A, OULHAJ A, JACOBY R, et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial[J]. Int J Geriatr Psychiatry, 2012, 27(6): 592-600. |
11 | KWOK T, WU Y Y, LEE J, et al. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients[J]. Clin Nutr, 2020, 39(8): 2399-2405. |
12 | MOUTINHO M, PUNTAMBEKAR S S, TSAI A P, et al. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease[J]. Sci Transl Med, 2022, 14(637): eabl7634. |
13 | DOREY C K, GIERHART D, FITCH K A, et al. Low xanthophylls, retinol, lycopene, and tocopherols in grey and white matter of brains with Alzheimer's disease[J]. J Alzheimers Dis, 2022. DOI: 10.3233/JAD-220460. |
14 | KESSE-GUYOT E, FEZEU L, JEANDEL C, et al. French adults' cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial[J]. Am J Clin Nutr, 2011, 94(3): 892-899. |
15 | KANG J H, COOK N R, MANSON J E, et al. Vitamin E, vitamin C, β carotene, and cognitive function among women with or at risk of cardiovascular disease: the Women's Antioxidant and Cardiovascular Study[J]. Circulation, 2009, 119(21): 2772-2780. |
16 | ROMÁN G C, JACKSON R E, GADHIA R, et al. Mediterranean diet: the role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease[J]. Rev Neurol (Paris), 2019, 175(10): 724-741. |
17 | MARGINĂ D, UNGURIANU A, PURDEL C, et al. Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease[J]. Food Chem Toxicol, 2020, 143: 111558. |
18 | GAUDREAULT R, MOUSSEAU N. Mitigating Alzheimer's disease with natural polyphenols: a review[J]. Curr Alzheimer Res, 2019, 16(6): 529-543. |
19 | MORI T, KOYAMA N, TAN J, et al. Combined treatment with the phenolics (-)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice[J]. J Biol Chem, 2019, 294(8): 2714-2731. |
20 | GIULIANI C. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells[J]. Antioxidants (Basel), 2019, 8(5): 112. |
21 | SHISHTAR E, ROGERS G T, BLUMBERG J B, et al. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort[J]. Am J Clin Nutr, 2020, 112(2): 343-353. |
22 | LEE J, TOROSYAN N, SILVERMAN D H. Examining the impact of grape consumption on brain metabolism and cognitive function in patients with mild decline in cognition: a double-blinded placebo controlled pilot study[J]. Exp Gerontol, 2017, 87: 121-128. |
23 | KAPLAN A, ZELICHA H, YASKOLKA MEIR A, et al. The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age-related brain atrophy: the Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS)[J]. Am J Clin Nutr, 2022, 115(5): 1270-1281. |
24 | PILECKY M, ZÁVORKA L, ARTS M T, et al. Omega-3 PUFA profoundly affect neural, physiological, and behavioural competences-implications for systemic changes in trophic interactions[J]. Biol Rev Camb Philos Soc, 2021, 96(5): 2127-2145. |
25 | HAMILTON H A, NEWTON R, AUCHTERLONIE N A, et al. Systems approach to quantify the global omega-3 fatty acid cycle[J]. Nat Food, 2020, 1(1): 59-62. |
26 | DONG X, LI S R, CHEN J H, et al. Association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance in older adults: National Health and Nutrition Examination Survey (NHANES) 2011‒2014[J]. Nutr J, 2020, 19(1): 25. |
27 | MARTÍ DEL MORAL A, FORTIQUE F. Omega-3 fatty acids and cognitive decline: a systematic review[J]. Nutr Hosp, 2019, 36(4): 939-949. |
28 | VISARIA A, LO D, MANIAR P. Important considerations when assessing the effect of essential fatty acids on cognitive performance[J]. Nutr J, 2020, 19(1): 100. |
29 | MASANA M F, KOYANAGI A, HARO J M, et al. n-3 Fatty acids, Mediterranean diet and cognitive function in normal aging: a systematic review[J]. Exp Gerontol, 2017, 91: 39-50. |
30 | BACH-FAIG A, BERRY E M, LAIRON D, et al. Mediterranean diet pyramid today. Science and cultural updates[J]. Public Health Nutr, 2011, 14(12A): 2274-2284. |
31 | BALLARINI T, MELO VAN LENT D, BRUNNER J, et al. Mediterranean diet, Alzheimer disease biomarkers and brain atrophy in old age[J]. Neurology, 2021, 96(24): e2920-e2932. |
32 | KEENAN T D, AGRÓN E, MARES J A, et al. Adherence to a Mediterranean diet and cognitive function in the Age-Related Eye Disease Studies 1 & 2[J]. Alzheimers Dement, 2020, 16(6): 831-842. |
33 | ALEKSANDROVA K, KOELMAN L, RODRIGUES C E. Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies[J]. Redox Biol, 2021, 42: 101869. |
34 | DELGADO-LISTA J, ALCALA-DIAZ J F, TORRES-PEÑA J D, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial[J]. Lancet, 2022, 399(10338): 1876-1885. |
35 | COELHO-JÚNIOR H J, TRICHOPOULOU A, PANZA F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: a systematic review and meta-analysis[J]. Ageing Res Rev, 2021, 70: 101395. |
36 | TYSON C C, NWANKWO C, LIN P H, et al. The dietary approaches to stop hypertension (DASH) eating pattern in special populations[J]. Curr Hypertens Rep, 2012, 14(5): 388-396. |
37 | XU X Y, PARKER D, SHI Z M, et al. Dietary pattern, hypertension and cognitive function in an older population: 10-year longitudinal survey[J]. Front Public Health, 2018, 6: 201. |
38 | SPRINT MIND Investigators for the SPRINT Research Group, WILLIAMSON J D, PAJEWSKI N M, et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial[J]. JAMA, 2019, 321(6): 553-561. |
39 | DANIEL G D, CHEN H Y, BERTONI A G, et al. DASH diet adherence and cognitive function: multi-ethnic study of atherosclerosis[J]. Clin Nutr ESPEN, 2021, 46: 223-231. |
40 | MCGRATTAN A M, MCGUINNESS B, MCKINLEY M C, et al. Diet and inflammation in cognitive ageing and Alzheimer's disease[J]. Curr Nutr Rep, 2019, 8(2): 53-65. |
41 | MORRIS M C, TANGNEY C C, WANG Y M, et al. MIND diet slows cognitive decline with aging[J]. Alzheimers Dement, 2015, 11(9): 1015-1022. |
42 | DHANA K, FRANCO O H, RITZ E M, et al. Healthy lifestyle and life expectancy with and without Alzheimer's dementia: population based cohort study[J]. BMJ, 2022, 377: e068390. |
43 | HOSKING D E, ERAMUDUGOLLA R, CHERBUIN N, et al. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study[J]. Alzheimers Dement, 2019, 15(4): 581-589. |
44 | DHANA K, JAMES B D, AGARWAL P, et al. MIND diet, common brain pathologies, and cognition in community-dwelling older adults[J]. J Alzheimers Dis, 2021, 83(2): 683-692. |
45 | AN Y, VARMA V R, VARMA S, et al. Evidence for brain glucose dysregulation in Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(3): 318-329. |
46 | CROTEAU E, CASTELLANO C A, RICHARD M A, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 64(2): 551-561. |
47 | XU Y L, JIANG C Y, WU J Y, et al. Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer's disease[J]. CNS Neurosci Ther, 2022, 28(4): 580-592. |
48 | BRANDT J, BUCHHOLZ A, HENRY-BARRON B, et al. Preliminary report on the feasibility and efficacy of the modified atkins diet for treatment of mild cognitive impairment and early Alzheimer's disease[J]. J Alzheimers Dis, 2019, 68(3): 969-981. |
49 | SACKS F M, LICHTENSTEIN A H, WU J H Y, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association[J]. Circulation, 2017, 136(3): e1-e23. |
50 | OLSON C A, IÑIGUEZ A J, YANG G E, et al. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia[J]. Cell Host Microbe, 2021, 29(9): 1378-1392.e6. |
51 | KESIKA P, SUGANTHY N, SIVAMARUTHI B S, et al. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease[J]. Life Sci, 2021, 264: 118627. |
52 | NAGPAL R, NETH B J, WANG S H, et al. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer's disease markers in subjects with mild cognitive impairment: a pilot study[J]. EBioMedicine, 2020, 59: 102950. |
53 | SHI H L, GE X, MA X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites[J]. Microbiome, 2021, 9(1): 223. |
54 | RODRÍGUEZ-DAZA M C, PULIDO-MATEOS E C, LUPIEN-MEILLEUR J, et al. Polyphenol-mediated gut microbiota modulation: toward prebiotics and further[J]. Front Nutr, 2021, 8: 689456. |
55 | FRACASSI A, MARCATTI M, ZOLOCHEVSKA O, et al. Oxidative damage and antioxidant response in frontal cortex of demented and nondemented individuals with Alzheimer's neuropathology[J]. J Neurosci, 2021, 41(3): 538-554. |
[1] | 孙慧, 金宏福, 郭沈睿, 冯奕源, 尹雅芙, 王辉, 程维维. 整合应激反应在阿尔茨海默病发病中作用的研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 755-760. |
[2] | 刘桃桃, 刘晓黎, 邬静莹, 倪瑞隆, 张梦圆, 季杜欣, 张梅, 曹立. 成人脑型肾上腺脑白质营养不良的临床及遗传学特征[J]. 上海交通大学学报(医学版), 2023, 43(5): 592-599. |
[3] | 谢欣宜, 周薇, 邱澈, 沈慧, 宋忠臣. 伴阿尔茨海默病牙周炎患者血清Th17/Treg相关细胞因子水平变化研究[J]. 上海交通大学学报(医学版), 2023, 43(5): 600-605. |
[4] | 杨子豪, 陈楠, 林偲蔚. 数字地形分析方法在大脑皮层形态研究中的应用[J]. 上海交通大学学报(医学版), 2023, 43(3): 342-349. |
[5] | 黄治物, 吴皓. 年龄相关性听力损失研究进展与临床干预策略[J]. 上海交通大学学报(医学版), 2022, 42(9): 1182-1187. |
[6] | 沙攀, 赵雪雯, 朱浩天, 高崇洲, 刘珅. 肌腱粘连的机制及干预研究进展[J]. 上海交通大学学报(医学版), 2022, 42(8): 1116-1121. |
[7] | 李燕, 江艳, 康琼芳, 陆群峰. 婴幼儿尿布性皮炎预防策略的最佳证据总结[J]. 上海交通大学学报(医学版), 2022, 42(3): 357-363. |
[8] | 林祎嘉, 程丽珍, 苗雅. 线粒体自噬异常在阿尔茨海默病中的作用及机制研究综述[J]. 上海交通大学学报(医学版), 2022, 42(3): 387-392. |
[9] | 韩春红, 王洁, 洪洋, 童亚慧. 深静脉血栓形成机械预防知信行问卷的编制及信度和效度检验[J]. 上海交通大学学报(医学版), 2022, 42(1): 28-35. |
[10] | 王毅, 程诚, 沈红艳, 高红艳, 戴悦宁, 易正辉. 经颅磁刺激对阿尔茨海默病患者认知功能及伴痴呆的行为精神症状疗效的meta分析[J]. 上海交通大学学报(医学版), 2021, 41(7): 931-941. |
[11] | 陈俊慧, 谷有全, 姚利和, 张薇, 王怀祥. 分子伴侣介导的自噬在阿尔茨海默病中作用的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(11): 1529-1534. |
[12] | 何海宁,张 微,严 峰,史琰琛,王静华,肖世富#,王 涛#. 阿尔茨海默病引起的轻度认知功能损害的微小RNA表达谱的生物信息学分析[J]. 上海交通大学学报(医学版), 2020, 40(9): 1174-1183. |
[13] | 张 童,张莹林,姚俊岩. 不同测试指标及观测时段对情景条件恐惧实验检测5XFAD转基因小鼠行为学效力的影响[J]. 上海交通大学学报(医学版), 2020, 40(6): 761-767. |
[14] | 何征晖1,汪 泱2,邓志锋3. 干细胞来源的细胞外囊泡修复治疗中枢神经系统疾病的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(1): 134-. |
[15] | 王昊 1*,江杉 1*,龚杨明 2,刘燕 3,华丽 1,邓晓蓓 1. 大气细颗粒物通过嗅球途径导致阿尔茨海默病的机制研究进展[J]. 上海交通大学学报(医学版), 2019, 39(6): 666-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||