1 |
GBD 2019 DEMENTIA FORECASTING COLLABORATORS. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2022, 7(2): e105-e125.
|
2 |
ASSOCIATION A. 2008 Alzheimer's disease facts and figures[J]. Alzheimer's Dement, 2008, 4(2): 110-133.
|
3 |
HARDING H P, ZHANG Y, ZENG H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress[J]. Mol Cell, 2003, 11(3): 619-633.
|
4 |
COSTA-MATTIOLI M, WALTER P. The integrated stress response: from mechanism to disease[J]. Science, 2020, 368(6489): eaat5314.
|
5 |
ALGIRE M A, MAAG D, LORSCH J R. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation[J]. Mol Cell, 2005, 20(2): 251-262.
|
6 |
KENNER L R, ANAND A A, NGUYEN H C, et al. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response[J]. Science, 2019, 364(6439): 491-495.
|
7 |
OLIVEIRA M M, KLANN E. eIF2-dependent translation initiation: memory consolidation and disruption in Alzheimer's disease[J]. Semin Cell Dev Biol, 2022, 125:101-109.
|
8 |
GARCÍA-JIMÉNEZ C, GODING C R. Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming[J]. Cell Metab, 2019, 29(2): 254-267.
|
9 |
VERGINADIS I I, AVGOUSTI H, MONSLOW J, et al. A stromal integrated stress response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression[J]. Nat Cell Biol, 2022, 24(6): 940-953.
|
10 |
CHATTOPADHYAY A, KWARTLER C S, KAW K, et al. Cholesterol-induced phenotypic modulation of smooth muscle cells to macrophage/fibroblast-like cells is driven by an unfolded protein response[J]. Arterioscler Thromb Vasc Biol, 2021, 41(1): 302-316.
|
11 |
SCHEUNER D, SONG B, MCEWEN E, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis[J]. Mol Cell,2001,7(6):1165-1176.
|
12 |
WEK R C. Role of eIF2α kinases in translational control and adaptation to cellular stress[J]. Cold Spring Harb Perspect Biol, 2018, 10(7): a032870.
|
13 |
SANTOS-RIBEIRO D, GODINAS L, PILETTE C, et al. The integrated stress response system in cardiovascular disease[J]. Drug Discov Today, 2018, 23(4): 920-929.
|
14 |
MORADI MAJD R, MAYELI M, RAHMANI F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases[J]. Metab Brain Dis, 2020, 35(8): 1241-1250.
|
15 |
MA T, TRINH M A, WEXLER A J, et al. Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits[J]. Nat Neurosci, 2013, 16(9): 1299-1305.
|
16 |
TIBLE M, MOUTON LIGER F, SCHMITT J, et al. PKR knockout in the 5xFAD model of Alzheimer's disease reveals beneficial effects on spatial memory and brain lesions[J]. Aging Cell, 2019, 18(3): e12887.
|
17 |
WONG Y L, LEBON L, BASSO A M, et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response[J]. Elife, 2019, 8: e42940.
|
18 |
JOUSSE C, OYADOMARI S, NOVOA I, et al. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells[J]. J Cell Biol, 2003, 163(4): 767-775.
|
19 |
NOVOA I, ZENG H, HARDING H P, et al. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α[J]. J Cell Biol, 2001, 153(5): 1011-1022.
|
20 |
MORENO J A, RADFORD H, PERETTI D, et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration[J]. Nature, 2012, 485(7399): 507-511.
|
21 |
JAWAID A, WOLDEMICHAEL B T, KREMER E A, et al. Memory decline and its reversal in aging and neurodegeneration involve miR-183/96/182 biogenesis[J]. Mol Neurobiol, 2019, 56(5): 3451-3462.
|
22 |
CHANG R C, WONG A K, NG H K, et al. Phosphorylation of eukaryotic initiation factor-2α (eIF2α) is associated with neuronal degeneration in Alzheimer's disease[J]. Neuroreport, 2002, 13(18): 2429-2432.
|
23 |
O'CONNOR T, SADLEIR K R, MAUS E, et al. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis[J]. Neuron, 2008, 60(6): 988-1009.
|
24 |
HU Z, YU P, ZHANG Y, et al. Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease[J]. Transl Psychiatry, 2022, 12(1): 96.
|
25 |
HAYAKAWA M, ITOH M, OHTA K, et al. Quercetin reduces eIF2α phosphorylation by GADD34 induction[J]. Neurobiol Aging, 2015, 36(9): 2509-2518.
|
26 |
RADFORD H, MORENO J A, VERITY N, et al. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia[J]. Acta Neuropathol, 2015, 130(5): 633-642.
|
27 |
TCW J, QIAN L, PIPALIA N H, et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia[J]. Cell, 2022, 185(13): 2213-2233.
|
28 |
OLIVEIRA M M, LOURENCO M V. Integrated stress response: connecting ApoE4 to memory impairment in Alzheimer's disease[J]. J Neurosci, 2016, 36(4): 1053-1055.
|
29 |
NAKAGAWA T, OHTA K. Quercetin regulates the integrated stress response to improve memory[J]. Int J Mol Sci, 2019, 20(11): E2761.
|
30 |
KASAI S, YAMAZAKI H, TANJI K, et al. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control[J]. J Clin Biochem Nutr, 2019, 64(1): 1-12.
|
31 |
LOPEZ-GRANCHA M, BERNARDELLI P, MOINDROT N, et al. A novel selective PKR inhibitor restores cognitive deficits and neurodegeneration in Alzheimer disease experimental models[J]. J Pharmacol Exp Ther, 2021, 378(3): 262-275.
|
32 |
LI J, GAO L, CHEN J, et al. Mitochondrial ROS-mediated ribosome stalling and GCN2 activation are partially involved in 1-nitropyrene-induced steroidogenic inhibition in testes[J]. Environ Int, 2022, 167: 107393.
|
33 |
ANAND A A, WALTER P. Structural insights into ISRIB, a memory-enhancing inhibitor of the integrated stress response[J]. Febs J, 2020, 287(2): 239-245.
|
34 |
RABOUW H H, LANGEREIS M A, ANAND A A, et al. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation[J]. Proc Natl Acad Sci USA, 2019, 116(6): 2097-2102.
|
35 |
HOSOI T, KAKIMOTO M, TANAKA K, et al. Unique pharmacological property of ISRIB in inhibition of Aβ-induced neuronal cell death[J]. J Pharmacol Sci, 2016, 131(4): 292-295.
|
36 |
OLIVEIRA M M, LOURENCO M V, LONGO F, et al. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer's disease[J]. Sci Signal, 2021, 14(668): eabc5429.
|
37 |
KRUKOWSKI K, NOLAN A, FRIAS E S, et al. Small molecule cognitive enhancer reverses age-related memory decline in mice[J]. Elife, 2020, 9: e62048.
|
38 |
TSAYTLER P, HARDING H P, RON D, et al. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis[J]. Science, 2011, 332(6025): 91-94.
|
39 |
SINGH A, GUPTA P, TIWARI S, et al. Guanabenz mitigates the neuropathological alterations and cell death in Alzheimer's disease[J]. Cell Tissue Res, 2022, 388(2): 239-258.
|
40 |
RUIZ A, ZUAZO J, ORTIZ-SANZ C, et al. Sephin1 protects neurons against excitotoxicity independently of the integrated stress response[J]. Int J Mol Sci, 2020, 21(17): E6088.
|
41 |
CARRARA M, SIGURDARDOTTIR A, BERTOLOTTI A. Decoding the selectivity of eIF2α holophosphatases and PPP1R15A inhibitors[J]. Nat Struct Mol Biol, 2017, 24(9): 708-716.
|
42 |
VAGNARELLI P, ALESSI D R. PP1 phosphatase complexes: undruggable no longer[J]. Cell, 2018, 174(5): 1049-1051.
|